1887

Abstract

In addition to the known response regulator ErbR (former AgmR) and the two-component regulatory system EraSR (former ExaDE), three additional regulatory proteins have been identified as being involved in controlling transcription of the aerobic ethanol oxidation system in . Two putative sensor kinases, ErcS and ErcS′, and a response regulator, ErdR, were found, all of which show significant similarity to the two-component system that controls methanol and formaldehyde metabolism in . All three identified response regulators, EraR (formerly ExaE), ErbR (formerly AgmR) and ErdR, are members of the family. The three sensor kinases EraS (formerly ExaD), ErcS and ErcS′ do not contain a membrane domain. Apparently, they are localized in the cytoplasm and recognize cytoplasmic signals. Inactivation of gene caused an extended lag phase on ethanol. Inactivation of both genes, and ′, resulted in no growth at all on ethanol, as did inactivation of . Of the three sensor kinases and three response regulators identified thus far, only the EraSR (formerly ExaDE) system forms a corresponding kinase/regulator pair. Using reporter gene constructs of all identified regulatory genes in different mutants allowed the hierarchy of a hypothetical complex regulatory network to be established. Probably, two additional sensor kinases and two additional response regulators, which are hidden among the numerous regulatory genes annotated in the genome of , remain to be identified.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.032847-0
2010-05-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/5/1505.html?itemId=/content/journal/micro/10.1099/mic.0.032847-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Madden T. L., Schaffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. 1997; Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402
    [Google Scholar]
  2. Ausubel F. A., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., Struhl K. editors) 2002 Current Protocols in Molecular Biology New York: Wiley;
  3. Boyer H. W., Roulland-Dussoix D. 1969; A complementation analysis of the restriction and modification of DNA in Escherichia coli. J Mol Biol 41:459–472
    [Google Scholar]
  4. Cetin E. T., Töreci K. I., Ang ö. 1965; Encapsulated Pseudomonas aeruginosa ( Pseudomonas mucosus) strains. J Bacteriol 89:1432–1433
    [Google Scholar]
  5. Farinha M. A., Kropinski A. M. 1990; Construction of broad-host-range plasmid vectors for easy visible selection and analysis of promoters. J Bacteriol 172:3496–3499
    [Google Scholar]
  6. Figurski D. H., Helinski D. R. 1979; Replication of an origin-containing derivative of plasmid RK2 dependent on a plasmid function provided in trans. Proc Natl Acad Sci U S A 76:1648–1652
    [Google Scholar]
  7. Ghosh M., Anthony C., Harlos K., Goodwin M. G., Blake C. 1995; The refined structure of the quinoprotein methanol dehydrogenase from Methylobacterium extorquens. Structure 3:177–187
    [Google Scholar]
  8. Gliese N., Khodaverdi V., Schobert M., Görisch H. 2004; AgmR controls transcription of a regulon with several operons essential for ethanol oxidation in Pseudomonas aeruginosa ATCC 17933. Microbiology 150:1851–1857
    [Google Scholar]
  9. Görisch H. 2003; The ethanol oxidation system and its regulation in Pseudomonas aeruginosa. Biochim Biophys Acta 1647:98–102
    [Google Scholar]
  10. Hanahan D. 1983; Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166:557–580
    [Google Scholar]
  11. Harms N., Reijnders W. N. M., Koning S., Van Spanning R. J. M. 2001; Two-component system that regulates methanol and formaldehyde oxidation in Paracoccus denitrificans. J Bacteriol 183:664–670
    [Google Scholar]
  12. Hoang T. T., Karkhoff-Schweizer R. R., Kutchma A. J., Schweizer H. P. 1998; A broad-host-range Flp-FRT recombination system for site-specific excision of chromosomally-located DNA sequences: application for isolation of unmarked Pseudomonas aeruginosa mutants. Gene 212:77–86
    [Google Scholar]
  13. Keitel T., Diehl A., Knaute T., Stezowski J. J., Höhne W., Görisch H. 2000; X-ray structure of the quinoprotein ethanol dehydrogenase from Pseudomonas aeruginosa: basis of substrate specificity. J Mol Biol 297:961–974
    [Google Scholar]
  14. Kretzschmar U., Schobert M., Görisch H. 2001; The Pseudomonas aeruginosa acsA gene, encoding an acetyl-CoA synthetase, is essential for growth on ethanol. Microbiology 147:2671–2677
    [Google Scholar]
  15. Kretzschmar U., Khodaverdi V., Jeoung J. H., Görisch H. 2008; Function and transcriptional regulation of the isocitrate lyase in Pseudomonas aeruginosa. Arch Microbiol 190:151–158
    [Google Scholar]
  16. Lidstrom M. E., Anthony C., Biville F., Gasser F., Goodwin P., Hanson R. S., Harms N. 1994; New unified nomenclature for genes involved in the oxidation of methanol in Gram-negative bacteria. FEMS Microbiol Lett 117:103–106
    [Google Scholar]
  17. Matsushita K., Shinagawa E., Adachi O., Ameyama M. 1982; O-type cytochrome oxidase in the membrane of aerobically grown Pseudomonas aeruginosa. FEBS Lett 139:255–258
    [Google Scholar]
  18. Mennenga B., Kay C. W. M., Görisch H. 2009; Quinoprotein ethanol dehydrogenase from Pseudomonas aeruginosa: the unusual disulfide ring formed by adjacent cysteine residues is essential for efficient electron transfer to cytochrome c550. Arch Microbiol 191:361–367
    [Google Scholar]
  19. Miller J. M. 1992 A Short Course in Bacterial Genetics, a Laboratory Manual and Handbook for Escherichia coli and Related Bacteria Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
  20. Mutzel A., Görisch H. 1992; Quinoprotein ethanol dehydrogenase: preparation of the apo form and reconstitution with pyrrolloquinoline quinone and Ca2+ and Sr2+ ions. Agric Biol Chem 55:1721–1726
    [Google Scholar]
  21. Reichmann P., Görisch H. 1993; Cytochrome c550 from Pseudomonas aeruginosa. Biochem J 289:173–178
    [Google Scholar]
  22. Rupp M., Görisch H. 1988; Purification, crystallization and characterization of quinoprotein ethanol dehydrogenase from Pseudomonas aeruginosa. Biol Chem Hoppe Seyler 369:431–439
    [Google Scholar]
  23. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
  24. Schobert M. 1999 Molekulargenetische Untersuchungen zum Ethanol-oxidierenden System in Pseudomonas aeruginosa PhD thesis Technische Universität; Berlin, Germany:
  25. Schobert M., Görisch H. 1999; Cytochrome c550 is an essential component of the quinoprotein ethanol oxidation system in Pseudomonas aeruginosa: cloning and sequencing of the genes encoding cytochrome c550 and an adjacent acetaldehyde dehydrogenase. Microbiology 145:471–481
    [Google Scholar]
  26. Schobert M., Görisch H. 2001; A soluble two-component regulatory system controls expression of quinoprotein ethanol dehydrogenase (QEDH) but not expression of cytochrome c550 of the ethanol-oxidation system in Pseudomonas aeruginosa. Microbiology 147:363–372
    [Google Scholar]
  27. Schwartz E., Gerischer U., Friedrich B. 1998; Transcriptional regulation of Alcaligenes eutrophus hydrogenase genes. J Bacteriol 180:3197–3204
    [Google Scholar]
  28. Schweizer H. P. 1991; The agmR gene, an environmentally responsive gene, complements defective glpR, which encodes the putative activator for glycerol metabolism in Pseudomonas aeruginosa. J Bacteriol 173:6798–6806
    [Google Scholar]
  29. Schweizer H. P. 1992; Allelic exchange in Pseudomonas aeruginosa using novel ColE1-type vectors and a family of cassettes containing a portable oriT and the counter selectable Bacillus subtilis sacB marker. Mol Microbiol 6:1195–1204
    [Google Scholar]
  30. Schweizer H. D. 1993; Small broad-host-range gentamycin resistance gene cassette for site-specific insertion and deletion mutagenesis. Biotechniques 15:831–834
    [Google Scholar]
  31. Schweizer H. P., Po C. 1996; Regulation of glycerol metabolism in Pseudomonas aeruginosa: characterization of the glpR repressor gene. J Bacteriol 178:5215–5221
    [Google Scholar]
  32. Schweizer H. P., Klassen T. R., Hoang T. 1996; Improved methods for gene analysis in Pseudomonas. In Molecular Biology of Pseudomonads pp 229–237 Edited by Nakazawa T., Furukawa K., Haas D., Silver S. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  33. Smith A. W., Iglewski B. H. 1989; Transformation of Pseudomonas aeruginosa by electroporation. Nucleic Acids Res 17:10509
    [Google Scholar]
  34. Stover C. K., Pham X. Q., Erwin A. L., Mizoguchi S. D., Warrener P., Hickey M. J., Brinkman F. S., Hufnagel W. O., Kowalik D. J. other authors 2000; Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature 406:959–964
    [Google Scholar]
  35. Winsor G. L., Van Rossum T., Lo R., Khaira B., Whiteside M. D., Hancock R. E., Brinkman F. S. 2009; Pseudomonas Genome Database: facilitating user-friendly, comprehensive comparisons of microbial genomes. Nucleic Acids Res 37:D483–D488
    [Google Scholar]
  36. Xia Z., Dai W. W., Zhang Y., White S. A., Boyd G. D., Mathews F. S. 1996; Determination of the gene sequence and the three-dimensional structure at 2.4 Å resolution of methanol dehydrogenase from Methylophilus W3A1. J Mol Biol 259:480–501
    [Google Scholar]
  37. Yanisch-Perron C., Vieira J., Messing J. 1985; Improved M13 phage cloning vectors and host strains: nucleotide sequence of the M13mp18 and pUC19 vectors. Gene 33:103–119
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.032847-0
Loading
/content/journal/micro/10.1099/mic.0.032847-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error