1887

Abstract

Among the large variety of micro-organisms capable of fermentative hydrogen production, strict anaerobes such as members of the genus are the most widely studied. They can produce hydrogen by a reversible reduction of protons accumulated during fermentation to dihydrogen, a reaction which is catalysed by hydrogenases. Sequenced genomes provide completely new insights into the diversity of clostridial hydrogenases. Building on previous reports, we found that [FeFe] hydrogenases are not a homogeneous group of enzymes, but exist in multiple forms with different modular structures and are especially abundant in members of the genus . This unusual diversity seems to support the central role of hydrogenases in cell metabolism. In particular, the presence of multiple putative operons encoding multisubunit [FeFe] hydrogenases highlights the fact that hydrogen metabolism is very complex in this genus. In contrast with [FeFe] hydrogenases, their [NiFe] hydrogenase counterparts, widely represented in other bacteria and archaea, are found in only a few clostridial species. Surprisingly, a heteromultimeric Ech hydrogenase, known to be an energy-converting [NiFe] hydrogenase and previously described only in methanogenic archaea and some sulfur-reducing bacteria, was found to be encoded by the genomes of four cellulolytic strains: , , and .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.032771-0
2010-06-01
2020-08-09
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/6/1575.html?itemId=/content/journal/micro/10.1099/mic.0.032771-0&mimeType=html&fmt=ahah

References

  1. Balk J., Pierik A. J., Netz D. J., Mühlenhoff U., Lill R.. 2004; The hydrogenase-like Nar1p is essential for maturation of cytosolic and nuclear iron-sulphur proteins. EMBO J23:2105–2115
    [Google Scholar]
  2. Bartacek J., Zabranska J., Lens P. N. L.. 2007; Developments and constraints in fermentative hydrogen production. Biofuels Bioprod Bioref1:201–214
    [Google Scholar]
  3. Böck A., King P. W., Blokesch M., Posewitz M. C.. 2006; Maturation of hydrogenases. Adv Microb Physiol51:1–71
    [Google Scholar]
  4. Burroughs A. M., Balaji S., Iyer L. M., Aravind L.. 2007; Small but versatile: the extraordinary functional and structural diversity of the β-grasp fold. Biol Direct2:18
    [Google Scholar]
  5. Demuez M., Cournac L., Guerrini O., Soucaille P., Girbal L.. 2007; Complete activity profile of Clostridium acetobutylicum [FeFe]-hydrogenase and kinetic parameters for endogenous redox partners. FEMS Microbiol Lett275:113–121
    [Google Scholar]
  6. Dubini A., Sargent F.. 2003; Assembly of Tat-dependent [NiFe] hydrogenases: identification of precursor-binding accessory proteins. FEBS Lett549:141–146
    [Google Scholar]
  7. Fang H. H., Liu H.. 2002; Effect of pH on hydrogen production from glucose by a mixed culture. Bioresour Technol82:87–93
    [Google Scholar]
  8. Friedrich B., Buhrke T., Burgdorf T., Lenz O.. 2005; A hydrogen-sensing multiprotein complex controls aerobic hydrogen metabolism in Ralstonia eutropha. Biochem Soc Trans33:97–101
    [Google Scholar]
  9. Gardy J. L., Laird M. R., Chen F., Rey S., Walsh C. J., Ester M., Brinkman F. S. L.. 2005; PSORTb v.2.0: expanded prediction of bacterial protein subcellular localization and insights gained from comparative proteome analysis. Bioinformatics21:617–623
    [Google Scholar]
  10. Graentzdoerffer A., Rauh D., Pich A., Andreesen J. R.. 2003; Molecular and biochemical characterization of two tungsten- and selenium-containing formate dehydrogenases from Eubacterium acidaminophilum that are associated with components of an iron-only hydrogenase. Arch Microbiol179:116–130
    [Google Scholar]
  11. Hallenbeck P. C., Benemann J. R.. 2002; Biological hydrogen production; fundamentals and limiting processes. Int J Hydrogen Energy27:1185–1193
    [Google Scholar]
  12. Hedderich R., Forzi L.. 2005; Energy-converting [NiFe] hydrogenases: more than just H2 activation. J Mol Microbiol Biotechnol10:92–104
    [Google Scholar]
  13. Heinekey D. M.. 2009; Hydrogenase enzymes: recent studies and active site models. J Organomet Chem694:2671–2680
    [Google Scholar]
  14. Herrmann G., Jayamani E., Mai G., Buckel W.. 2008; Energy conservation via electron-transferring flavoprotein in anaerobic bacteria. J Bacteriol190:784–791
    [Google Scholar]
  15. Kaji M., Taniguchi Y., Matsushita O., Katayama S., Miyata S., Morita S., Okabe A.. 1999; The hydA gene encoding the H2-evolving hydrogenase of Clostridium perfringens: molecular characterization and expression of the gene. FEMS Microbiol Lett181:329–336
    [Google Scholar]
  16. Katoh K., Toh H.. 2008; Recent developments in the MAFFT multiple sequence alignment program. Brief Bioinform9:286–298
    [Google Scholar]
  17. Khanal S. K., Chen W.-H., Li L., Sung S.. 2004; Biological hydrogen production: effects of pH and intermediate products. Int J Hydrogen Energy29:1123–1131
    [Google Scholar]
  18. Kleihues L., Lenz O., Bernhard M., Buhrke T., Friedrich B.. 2000; The H2 sensor of Ralstonia eutropha is a member of the subclass of regulatory [NiFe] hydrogenases. J Bacteriol182:2716–2724
    [Google Scholar]
  19. Kurkin S., Meuer J., Koch J., Hedderich R., Albracht S. P. J.. 2002; The membrane-bound [NiFe]-hydrogenase (Ech) from Methanosarcina barkeri: unusual properties of the iron-sulphur clusters. Eur J Biochem269:6101–6111
    [Google Scholar]
  20. Levin D. B., Pitt L., Love M.. 2004; Biohydrogen production: prospects and limitations to practical application. Int J Hydrogen Energy29:173–185
    [Google Scholar]
  21. Li C., Fang H. H. P.. 2007; Fermentative hydrogen production from wastewater and solid wastes by mixed cultures. Crit Rev Environ Sci Technol37:1–39
    [Google Scholar]
  22. Li M., Liu M. Y., LeGall J., Gui L. L., Liao J., Jiang T., Zhang J. P., Liang D. C., Chang W. R.. 2003; Crystal structure studies on rubrerythrin: enzymatic activity in relation to the zinc movement. J Biol Inorg Chem8:149–155
    [Google Scholar]
  23. Lin P. Y., Whang L. M., Wu Y. R., Ren W. J., Hsiao C. J., Li S. L., Chang J. S.. 2007; Biological hydrogen production of the genus Clostridium: metabolic study and mathematical model simulation. Int J Hydrogen Energy32:1728–1735
    [Google Scholar]
  24. Liu X., Zhu Y., Yang S. T.. 2005; Butyric acid and hydrogen production by Clostridium tyrobutyricum ATCC 25755 and mutants. Enzyme Microb Technol38:521–528
    [Google Scholar]
  25. Liu Y., Yu P., Song X., Qu Y.. 2008; Hydrogen production from cellulose by co-culture of Clostridium thermocellum JN4 and Thermoanaerobacterium thermosaccharolyticum GD17. Int J Hydrogen Energy33:2927–2933
    [Google Scholar]
  26. Maeda T., Sanchez-Torres V., Wood T. K.. 2007; Escherichia coli hydrogenase 3 is a reversible enzyme possessing hydrogen uptake and synthesis activities. Appl Microbiol Biotechnol76:1035–1042
    [Google Scholar]
  27. Marchler-Bauer A., Anderson J. B., Chitsaz F., Derbyshire M. K., DeWeese-Scott C., Fong J. H., Geer L. Y., Geer R. C., Gonzales N. R.. other authors 2009; CDD: specific functional annotation with the Conserved Domain Database. Nucleic Acids Res37:D205–D210
    [Google Scholar]
  28. Masepohl B., Kutsche M., Riedel K. U., Schmehl M., Klipp W., Pühler A.. 1992; Functional analysis of the cysteine motifs in the ferredoxin-like protein FdxN of Rhizobium meliloti involved in symbiotic nitrogen fixation. Mol Gen Genet233:33–41
    [Google Scholar]
  29. Masukawa H., Mochimaru M., Sakura H.. 2002; Hydrogenases and photobiological hydrogen production utilizing nitrogenase system in cyanobacteria. Int J Hydrogen Energy27:1471–1474
    [Google Scholar]
  30. Mathews J., Wang G.. 2009; Metabolic pathway engineering for enhanced biohydrogen production. Int J Hydrogen Energy34:7404–7416
    [Google Scholar]
  31. Meek L., Arp D. J.. 2000; The hydrogenase cytochrome b heme ligands of Azotobacter vinelandii are required for full H2 oxidation capability. J Bacteriol182:3429–3436
    [Google Scholar]
  32. Meuer J., Kuettner H. C., Zhang J. K., Hedderich R., Metcalf W.. 2002; Genetic analysis of the archaeon Methanosarcina barkeri Fusaro reveals a central role for Ech hydrogenase and ferredoxin in methanogenesis and carbon fixation. Proc Natl Acad Sci U S A99:5632–5637
    [Google Scholar]
  33. Meyer J.. 2007; [FeFe] hydrogenases and their evolution: a genomic perspective. Cell Mol Life Sci64:1063–1084
    [Google Scholar]
  34. Morimoto K., Kimura T., Sakka K., Ohmiya K.. 2005; Overexpression of a hydrogenase gene in Clostridium paraputrificum to enhance hydrogen gas production. FEMS Microbiol Lett246:229–234
    [Google Scholar]
  35. Nath K., Das D.. 2004; Improvement for fermentative hydrogen production: various approaches. Appl Microbiol Biotechnol65:520–529
    [Google Scholar]
  36. Nicolet Y., Piras C., Legrand P., Hatchikian C. E., Fontecilla-Camps J. C.. 1999; Desulfovibrio desulfuricans iron hydrogenase: the structure shows unusual coordination to an active site Fe binuclear center. Structure7:13–23
    [Google Scholar]
  37. Nicolet Y., Lemon B. J., Fontecilla-Camps J. C., Peters J. W.. 2000; A novel FeS cluster in Fe-only hydrogenases. Trends Biochem Sci25:138–143
    [Google Scholar]
  38. Pereira P. M., He Q., Valente F. M. A., Xavier A. V., Zhou J., Pereira I. A. C., Louro L. O.. 2008; Energy metabolism in Desulfovibrio vulgaris Hildenborough: insights from transcriptome analysis. Antonie van Leeuwenhoek93:347–362
    [Google Scholar]
  39. Peters J. W., Lanzilotta W. N., Lemon B. J., Seefeldt L. C.. 1998; X-ray crystal structure of the Fe-only hydrogenase (CpI) from Clostridium pasteurianum to 1.8 Angstrom resolution. Science282:1853–1858
    [Google Scholar]
  40. Pierik A. J., Wolbert R. B., Portier G. L., Verhagen M. F., Hagen W. R.. 1993; Nigerythrin and rubrerythrin from Desulfovibrio vulgaris each contain two mononuclear iron centers and two dinuclear iron clusters. Eur J Biochem212:237–245
    [Google Scholar]
  41. Pilak O., Mamat B., Vogt S., Hagemeier C. H., Thauer R. K., Shima S., Vonrhein C., Warkentin E., Ermler U.. 2006; The crystal structure of the apoenzyme of the iron-sulfur cluster-free hydrogenase. J Mol Biol358:798–809
    [Google Scholar]
  42. Posewitz M. C., King P. W., Smolinski S. L., Zhang L., Seibert M., Ghirardi M. L.. 2004; Discovery of two novel radical S-adenosylmethionine proteins required for the assembly of an active [Fe] hydrogenase. J Biol Chem279:25711–25720
    [Google Scholar]
  43. Rodrigues R., Valente F. M. A., Pereira I. A. C., Oliveira S., Rodrigues-Pousada C.. 2003; A novel membrane-bound Ech [NiFe] hydrogenase in Desulfovibrio gigas. Biochem Biophys Res Commun306:366–375
    [Google Scholar]
  44. Sadana J. C., Rittenberg D.. 1963; Some observations on the enzyme hydrogenase of Desulfovibrio desulfuricans. Proc Natl Acad Sci U S A50:900–904
    [Google Scholar]
  45. Schut G. J., Adams M. W.. 2009; The iron-hydrogenase of Thermotoga maritima utilizes ferredoxin and NADH synergistically: a new perspective on anaerobic hydrogen production. J Bacteriol191:4451–4457
    [Google Scholar]
  46. Self W. T., Hasona A., Shanmugam K. T.. 2004; Expression and regulation of a silent operon, hyf, coding for hydrogenase 4 isoenzyme in Escherichia coli. J Bacteriol186:580–587
    [Google Scholar]
  47. Singer S. W., Hirst M. B., Ludden P. W.. 2006; CO-dependent H2 evolution by Rhodospirillum rubrum: role of CODH : CooF complex. Biochim Biophys Acta 1757;1582–1591
    [Google Scholar]
  48. Tamura K., Dudley J., Nei M., Kumar S.. 2007; mega4: Molecular Evolutionary Genetics Analysis (mega) software version 4.0. Mol Biol Evol24:1596–1599
    [Google Scholar]
  49. Van Ginkel S. W., Oh S. E., Logan B. E.. 2005; Biohydrogen gas production from food processing and domestic wastewaters. Int J Hydrogen Energy30:1535–1542
    [Google Scholar]
  50. Vanoni M. A., Curti B.. 2008; Structure–function studies of glutamate synthases: a class of self-regulated iron-sulfur flavoenzymes essential for nitrogen assimilation. IUBMB Life60:287–300
    [Google Scholar]
  51. Vardar-Schara G., Maeda T., Wood T. K.. 2007; Metabolically engineered bacteria for producing hydrogen via fermentation. Microbiol Biotechnol1:107–125
    [Google Scholar]
  52. Verhagen M. F., O'Rourke T., Adams M. W.. 1999; The hyperthermophilic bacterium, Thermotoga maritima, contains an unusually complex iron-hydrogenase: amino acid sequence analyses versus biochemical characterization. Biochim Biophys Acta1412:212–229
    [Google Scholar]
  53. Vignais P. M.. 2008; Hydrogenases and H+-reduction in primary energy conservation. Results Probl Cell Differ45:223–252
    [Google Scholar]
  54. Vignais P. M., Colbeau A.. 2004; Molecular biology of microbial hydrogenases. Curr Issues Mol Biol6:159–188
    [Google Scholar]
  55. Vignais P. M., Billoud B., Meyer J.. 2001; Classification and phylogeny of hydrogenases. FEMS Microbiol Rev25:455–501
    [Google Scholar]
  56. Volbeda A., Charon M. H., Piras C., Hatchikian E. C., Frey M., Fontecilla-Camps J. C.. 1995; Crystal structure of the nickel-iron hydrogenase from Desulfovibrio gigas. Nature373:580–587
    [Google Scholar]
  57. Wang M. Y., Tsai Y. L., Olson B. H., Chang J. S.. 2008a; Monitoring dark hydrogen fermentation performance of indigenous Clostridium butyricum by hydrogenase gene expression using RT-PCR and qPCR. Int J Hydrogen Energy33:4730–4738
    [Google Scholar]
  58. Wang M. Y., Olson B. H., Chang J. S.. 2008b; Relationship among growth parameters for Clostridium butyricum, hydA gene expression, and biohydrogen production in a sucrose-supplemented batch reactor. Appl Microbiol Biotechnol78:525–532
    [Google Scholar]
  59. Woodward J., Orr M., Cordray K., Greenbaum E.. 2000; Enzymatic production of biohydrogen. Nature405:1014–1015
    [Google Scholar]
  60. Wu L. F., Ize B., Chanal A., Quentin Y., Fichant G.. 2000; Bacterial twin-arginine signal peptide-dependent protein translocation pathway: evolution and mechanism. J Mol Microbiol Biotechnol2:179–189
    [Google Scholar]
  61. Yang K., Metcalf W. W.. 2004; A new activity for an old enzyme: Escherichia coli bacterial alkaline phosphatase is a phosphite-dependent hydrogenase. Proc Natl Acad Sci U S A101:7919–7924
    [Google Scholar]
  62. Yates M. G., De Souza E. M., Kahindi J. H.. 1997; Oxygen, hydrogen and nitrogen fixation in Azotobacter. Soil Biol Biochem29:863–869
    [Google Scholar]
  63. Zhang Y. H. P., Evans B. R., Mielenz J. R., Hopkins R. C., Adams M. W. W.. 2007; High-yield hydrogen production from starch and water by a synthetic enzymatic pathway. PLoS One2:e456
    [Google Scholar]
  64. Zhulin I. B., Taylor B. L., Dixon R.. 1997; PAS domain S-boxes in archaea, bacteria and sensors for oxygen and redox. Trends Biochem Sci22:331–333
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.032771-0
Loading
/content/journal/micro/10.1099/mic.0.032771-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error