1887

Abstract

Early in infection, can be observed to attach to the epithelial cell surface as microcolonies and induce dramatic changes to the host cell cortex. We tested the hypothesis that type IV pili (Tfp) retraction plays a role in the ultrastructure of both the host cell cortex and the bacterial microcolony. Using serial ultrathin sectioning, transmission electron microscopy and 3D reconstruction of serial 2D images, we have obtained what we believe to be the first 3D reconstructions of the –host cell interface, and determined the architecture of infected cell microvilli as well as the attached microcolony. Tfp connect both wild-type (wt) and Tfp retraction-deficient bacteria with each other, and with the host cell membrane. Tfp fibres and microvilli form a lattice in the wt microcolony and at its periphery. Wt microcolonies induce microvilli formation and increases of surface area, leading to an approximately ninefold increase in the surface area of the host cell membrane at the site of attachment. In contrast, Tfp retraction-deficient microcolonies do not affect these parameters. Wt microcolonies had a symmetrical, dome-shaped structure with a circular ‘footprint’, while Tfp retraction-deficient microcolonies were notably less symmetrical. These findings support a major role for Tfp retraction in microvilli and microcolony architecture. They are consistent with the biophysical attributes of Tfp and the effects of Tfp retraction on epithelial cell signalling.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.032656-0
2009-12-01
2019-10-22
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/12/4084.html?itemId=/content/journal/micro/10.1099/mic.0.032656-0&mimeType=html&fmt=ahah

References

  1. Achtman, M., Neibert, M., Crowe, B. A., Strittmatter, W., Kusecek, B., Weyse, E., Walsh, M. J., Slawig, B., Morelli, G. & other authors ( 1988; ). Purification and characterization of eight class 5 outer membrane protein variants from a clone of Neisseria meningitidis serogroup A. J Exp Med 168, 507–525.[CrossRef]
    [Google Scholar]
  2. Andrade, L. O. & Andrews, N. W. ( 2004; ). Lysosomal fusion is essential for the retention of Trypanosoma cruzi inside host cells. J Exp Med 200, 1135–1143.[CrossRef]
    [Google Scholar]
  3. Ayala, B. P., Vasquez, B., Clary, S., Tainer, J. A., Rodland, K. & So, M. ( 2001; ). The pilus-induced Ca2+ flux triggers lysosome exocytosis and increases the amount of Lamp1 accessible to Neisseria IgA1 protease. Cell Microbiol 3, 265–275.[CrossRef]
    [Google Scholar]
  4. Ayala, P., Wilbur, J. S., Wetzler, L. M., Tainer, J. A., Snyder, A. & So, M. ( 2005; ). The pilus and porin of Neisseria gonorrhoeae cooperatively induce Ca2+ transients in infected epithelial cells. Cell Microbiol 7, 1736–1748.[CrossRef]
    [Google Scholar]
  5. Biais, N., Ladoux, B., Higashi, D., So, M. & Sheetz, M. ( 2008; ). Cooperative retraction of bundled type IV pili enables nanonewton force generation. PLoS Biol 6, e87 [CrossRef]
    [Google Scholar]
  6. Blom, J., Gernow, A., Holck, S., Wewer, V., Norgaard, A., Graff, L. B., Krasilnikoff, P. A., Andersen, L. P. & Larsen, S. O. ( 2000; ). Different patterns of Helicobacter pylori adherence to gastric mucosa cells in children and adults. An ultrastructural study. Scand J Gastroenterol 35, 1033–1040.[CrossRef]
    [Google Scholar]
  7. Carbonnelle, E., Helaine, S., Prouvensier, L., Nassif, X. & Pelicic, V. ( 2005; ). Type IV pilus biogenesis in Neisseria meningitidis: PilW is involved in a step occurring after pilus assembly, essential for fibre stability and function. Mol Microbiol 55, 54–64.
    [Google Scholar]
  8. Craig, L., Volkmann, N., Arvai, A. S., Pique, M. E., Yeager, M., Egelman, E. H. & Tainer, J. A. ( 2006; ). Type IV pilus structure by cryo-electron microscopy and crystallography: implications for pilus assembly and functions. Mol Cell 23, 651–662.[CrossRef]
    [Google Scholar]
  9. Edwards, J. L., Shao, J. Q., Ault, K. A. & Apicella, M. A. ( 2000; ). Neisseria gonorrhoeae elicits membrane ruffling and cytoskeletal rearrangements upon infection of primary human endocervical and ectocervical cells. Infect Immun 68, 5354–5363.[CrossRef]
    [Google Scholar]
  10. Elliott, D. A. ( 2007; ). Serial sectioning via microtomy. Microscopy Today 15, 30–33.
    [Google Scholar]
  11. Elliott, D. A. & Clark, D. P. ( 2000; ). Cryptosporidium parvum induces host cell actin accumulation at the host–parasite interface. Infect Immun 68, 2315–2322.[CrossRef]
    [Google Scholar]
  12. Elliott, D. A., McIntosh, M. T., Hosgood, H. D., III, Chen, S., Zhang, G., Baevova, P. & Joiner, K. A. ( 2008; ). Four distinct pathways of hemoglobin uptake in the malaria parasite Plasmodium falciparum. Proc Natl Acad Sci U S A 105, 2463–2468.[CrossRef]
    [Google Scholar]
  13. Evans, B. A. ( 1977; ). Ultrastructural study of cervical gonorrhea. J Infect Dis 136, 248–255.[CrossRef]
    [Google Scholar]
  14. Goosney, D. L., DeVinney, R. & Finlay, B. B. ( 2001; ). Recruitment of cytoskeletal and signaling proteins to enteropathogenic and enterohemorrhagic Escherichia coli pedestals. Infect Immun 69, 3315–3322.[CrossRef]
    [Google Scholar]
  15. Griffiss, J. M., Lammel, C. J., Wang, J., Dekker, N. P. & Brooks, G. F. ( 1999; ). Neisseria gonorrhoeae coordinately uses pili and Opa to activate HEC-1-B cell microvilli, which causes engulfment of the gonococci. Infect Immun 67, 3469–3480.
    [Google Scholar]
  16. Higashi, D. L., Lee, S. W., Snyder, A., Weyand, N. J., Bakke, A. & So, M. ( 2007; ). Dynamics of Neisseria gonorrhoeae attachment: microcolony development, cortical plaque formation, and cytoprotection. Infect Immun 75, 4743–4753.[CrossRef]
    [Google Scholar]
  17. Holm, A., Sundqvist, T., Oberg, A. & Magnusson, K. E. ( 1999; ). Mechanical manipulation of polymorphonuclear leukocyte plasma membranes with optical tweezers causes influx of extracellular calcium through membrane channels. Med Biol Eng Comput 37, 410–412.[CrossRef]
    [Google Scholar]
  18. Hopper, S., Wilbur, J. S., Vasquez, B. L., Larson, J., Clary, S., Mehr, I. J., Seifert, H. S. & So, M. ( 2000; ). Isolation of Neisseria gonorrhoeae mutants that show enhanced trafficking across polarized T84 epithelial monolayers. Infect Immun 68, 896–905.[CrossRef]
    [Google Scholar]
  19. Howie, H. L., Glogauer, M. & So, M. ( 2005; ). The N. gonorrhoeae type IV pilus stimulates mechanosensitive pathways and cytoprotection through a pilT-dependent mechanism. PLoS Biol 3, e100 [CrossRef]
    [Google Scholar]
  20. Howie, H. L., Shiflett, S. L. & So, M. ( 2008; ). Extracellular signal-regulated kinase activation by Neisseria gonorrhoeae downregulates epithelial cell proapoptotic proteins Bad and Bim. Infect Immun 76, 2715–2721.[CrossRef]
    [Google Scholar]
  21. Kwok, T., Backert, S., Schwarz, H., Berger, J. & Meyer, T. F. ( 2002; ). Specific entry of Helicobacter pylori into cultured gastric epithelial cells via a zipper-like mechanism. Infect Immun 70, 2108–2120.[CrossRef]
    [Google Scholar]
  22. Larson, J. A., Higashi, D. L., Stojiljkovic, I. & So, M. ( 2002; ). Replication of Neisseria meningitidis within epithelial cells requires TonB-dependent acquisition of host cell iron. Infect Immun 70, 1461–1467.[CrossRef]
    [Google Scholar]
  23. Lee, S. W., Higashi, D. L., Snyder, A., Merz, A. J., Potter, L. & So, M. ( 2005; ). PilT is required for PI(3,4,5)P3-mediated crosstalk between Neisseria gonorrhoeae and epithelial cells. Cell Microbiol 7, 1271–1284.[CrossRef]
    [Google Scholar]
  24. Lin, L., Ayala, P., Larson, J., Mulks, M., Fukuda, M., Carlsson, S. R., Enns, C. & So, M. ( 1997; ). The Neisseria type 2 IgA1 protease cleaves LAMP1 and promotes survival of bacteria within epithelial cells. Mol Microbiol 24, 1083–1094.[CrossRef]
    [Google Scholar]
  25. Mattick, J. S. ( 2002; ). Type IV pili and twitching motility. Annu Rev Microbiol 56, 289–314.[CrossRef]
    [Google Scholar]
  26. McGee, Z. A., Johnson, A. P. & Taylor-Robinson, D. ( 1981; ). Pathogenic mechanisms of Neisseria gonorrhoeae: observations on damage to human fallopian tubes in organ culture by gonococci of colony type 1 or type 4. J Infect Dis 143, 413–422.[CrossRef]
    [Google Scholar]
  27. McGee, Z. A., Stephens, D. S., Hoffman, L. H., Schlech, W. F., III & Horn, R. G. ( 1983; ). Mechanisms of mucosal invasion by pathogenic Neisseria. Rev Infect Dis 5 (suppl. 4), S708–S714.[CrossRef]
    [Google Scholar]
  28. Merz, A. J. & So, M. ( 1997; ). Attachment of piliated, Opa- and Opc- gonococci and meningococci to epithelial cells elicits cortical actin rearrangements and clustering of tyrosine-phosphorylated proteins. Infect Immun 65, 4341–4349.
    [Google Scholar]
  29. Merz, A. J. & So, M. ( 2000; ). Interactions of pathogenic neisseriae with epithelial cell membranes. Annu Rev Cell Dev Biol 16, 423–457.[CrossRef]
    [Google Scholar]
  30. Merz, A. J., Rifenbery, D. B., Arvidson, C. G. & So, M. ( 1996; ). Traversal of a polarized epithelium by pathogenic Neisseriae: facilitation by type IV pili and maintenance of epithelial barrier function. Mol Med 2, 745–754.
    [Google Scholar]
  31. Merz, A. J., Enns, C. A. & So, M. ( 1999; ). Type IV pili of pathogenic neisseriae elicit cortical plaque formation in epithelial cells. Mol Microbiol 32, 1316–1332.[CrossRef]
    [Google Scholar]
  32. Merz, A. J., So, M. & Sheetz, M. P. ( 2000; ). Pilus retraction powers bacterial twitching motility. Nature 407, 98–102.[CrossRef]
    [Google Scholar]
  33. Mikaty, G., Soyer, M., Mairey, E., Henry, N., Dyer, D., Forest, K. T., Morand, P., Guadagnini, S., Prévost, M. C. & other authors ( 2009; ). Extracellular bacterial pathogen induces host cell surface reorganization to resist shear stress. PLoS Pathog 5, e1000314 [CrossRef]
    [Google Scholar]
  34. Mosleh, I. M., Boxberger, H. J., Sessler, M. J. & Meyer, T. F. ( 1997; ). Experimental infection of native human ureteral tissue with Neisseria gonorrhoeae: adhesion, invasion, intracellular fate, exocytosis, and passage through a stratified epithelium. Infect Immun 65, 3391–3398.
    [Google Scholar]
  35. Opitz, D., Clausen, M. & Maier, B. ( 2009; ). Dynamics of gonococcal type IV pili during infection. ChemPhysChem 10, 1614–1618.[CrossRef]
    [Google Scholar]
  36. Parge, H. E., Forest, K. T., Hickey, M. J., Christensen, D. A., Getzoff, E. D. & Tainer, J. A. ( 1995; ). Structure of the fibre-forming protein pilin at 2.6 Å resolution. Nature 378, 32–38.[CrossRef]
    [Google Scholar]
  37. Raucher, D., Stauffer, T., Chen, W., Shen, K., Guo, S., York, J. D., Sheetz, M. P. & Meyer, T. ( 2000; ). Phosphatidylinositol 4,5-bisphosphate functions as a second messenger that regulates cytoskeleton–plasma membrane adhesion. Cell 100, 221–228.[CrossRef]
    [Google Scholar]
  38. Sawada, Y., Tamada, M., Dubin-Thaler, B. J., Cherniavskaya, O., Sakai, R., Tanaka, S. & Sheetz, M. P. ( 2006; ). Force sensing by mechanical extension of the Src family kinase substrate p130Cas. Cell 127, 1015–1026.[CrossRef]
    [Google Scholar]
  39. Schmidt, C., Pommerenke, H., Durr, F., Nebe, B. & Rychly, J. ( 1998; ). Mechanical stressing of integrin receptors induces enhanced tyrosine phosphorylation of cytoskeletally anchored proteins. J Biol Chem 273, 5081–5085.[CrossRef]
    [Google Scholar]
  40. Segal, E., Hagblom, P., Seifert, H. S. & So, M. ( 1986; ). Antigenic variation of gonococcal pilus involves assembly of separated silent gene segments. Proc Natl Acad Sci U S A 83, 2177–2181.[CrossRef]
    [Google Scholar]
  41. Shao, J. Y., Ting-Beall, H. P. & Hochmuth, R. M. ( 1998; ). Static and dynamic lengths of neutrophil microvilli. Proc Natl Acad Sci U S A 95, 6797–6802.[CrossRef]
    [Google Scholar]
  42. Shaw, J. H. & Falkow, S. ( 1988; ). Model for invasion of human tissue culture cells by Neisseria gonorrhoeae. Infect Immun 56, 1625–1632.
    [Google Scholar]
  43. Steichen, C. T., Shao, J. Q., Ketterer, M. R. & Apicella, M. A. ( 2008; ). Gonococcal cervicitis: a role for biofilm in pathogenesis. J Infect Dis 198, 1856–1861.[CrossRef]
    [Google Scholar]
  44. Stephens, D. S. ( 1989; ). Gonococcal and meningococcal pathogenesis as defined by human cell, cell culture, and organ culture assays. Clin Microbiol Rev 2 (suppl.), S104–S111.
    [Google Scholar]
  45. Swanson, J. ( 1983; ). Gonococcal adherence: selected topics. Rev Infect Dis 5 (suppl. 4), S678–S684.[CrossRef]
    [Google Scholar]
  46. Tjia, K. F., van Putten, J. P., Pels, E. & Zanen, H. C. ( 1988; ). The interaction between Neisseria gonorrhoeae and the human cornea in organ culture. An electron microscopic study. Graefes Arch Clin Exp Ophthalmol 226, 341–345.[CrossRef]
    [Google Scholar]
  47. Turner, C. F., Rogers, S. M., Miller, H. G., Miller, W. C., Gribble, J. N., Chromy, J. R., Leone, P. A., Cooley, P. C., Quinn, T. C. & other authors ( 2002; ). Untreated gonococcal and chlamydial infection in a probability sample of adults. JAMA 287, 726–733.[CrossRef]
    [Google Scholar]
  48. Vonna, L., Wiedemann, A., Aepfelbacher, M. & Sackmann, E. ( 2003; ). Local force induced conical protrusions of phagocytic cells. J Cell Sci 116, 785–790.[CrossRef]
    [Google Scholar]
  49. Ward, M. E. & Watt, P. J. ( 1972; ). Adherence of Neisseria gonorrhoeae to urethral mucosal cells: an electron-microscopic study of human gonorrhea. J Infect Dis 126, 601–605.[CrossRef]
    [Google Scholar]
  50. Ward, M. E., Watt, P. J. & Robertson, J. N. ( 1974; ). The human fallopian tube: a laboratory model for gonococcal infection. J Infect Dis 129, 650–659.[CrossRef]
    [Google Scholar]
  51. Weyand, N. J., Lee, S. W., Higashi, D. L., Cawley, D., Yoshihara, P. & So, M. ( 2006; ). Monoclonal antibody detection of CD46 clustering beneath Neisseria gonorrhoeae microcolonies. Infect Immun 74, 2428–2435.[CrossRef]
    [Google Scholar]
  52. Winther-Larsen, H. C., Wolfgang, M., Dunham, S., van Putten, J. P., Dorward, D., Lovold, C., Aas, F. E. & Koomey, M. ( 2005; ). A conserved set of pilin-like molecules controls type IV pilus dynamics and organelle-associated functions in Neisseria gonorrhoeae. Mol Microbiol 56, 903–917.[CrossRef]
    [Google Scholar]
  53. Wolfgang, M., Lauer, P., Park, H. S., Brossay, L., Hebert, J. & Koomey, M. ( 1998; ). PilT mutations lead to simultaneous defects in competence for natural transformation and twitching motility in piliated Neisseria gonorrhoeae. Mol Microbiol 29, 321–330.[CrossRef]
    [Google Scholar]
  54. Wolfgang, M., van Putten, J. P., Hayes, S. F., Dorward, D. & Koomey, M. ( 2000; ). Components and dynamics of fiber formation define a ubiquitous biogenesis pathway for bacterial pili. EMBO J 19, 6408–6418.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.032656-0
Loading
/content/journal/micro/10.1099/mic.0.032656-0
Loading

Data & Media loading...

Supplements

[PDF](31 KB)

PDF

[QuickTime movie file](4100 KB)

MOVIE

[QuickTime movie file](4600 KB)

MOVIE

[QuickTime movie file](5400 KB)

MOVIE

[QuickTime movie file](899 KB)

MOVIE

[QuickTime movie file](832 KB)

MOVIE

[QuickTime movie file](4300 KB)

MOVIE
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error