1887

Abstract

Early in infection, can be observed to attach to the epithelial cell surface as microcolonies and induce dramatic changes to the host cell cortex. We tested the hypothesis that type IV pili (Tfp) retraction plays a role in the ultrastructure of both the host cell cortex and the bacterial microcolony. Using serial ultrathin sectioning, transmission electron microscopy and 3D reconstruction of serial 2D images, we have obtained what we believe to be the first 3D reconstructions of the –host cell interface, and determined the architecture of infected cell microvilli as well as the attached microcolony. Tfp connect both wild-type (wt) and Tfp retraction-deficient bacteria with each other, and with the host cell membrane. Tfp fibres and microvilli form a lattice in the wt microcolony and at its periphery. Wt microcolonies induce microvilli formation and increases of surface area, leading to an approximately ninefold increase in the surface area of the host cell membrane at the site of attachment. In contrast, Tfp retraction-deficient microcolonies do not affect these parameters. Wt microcolonies had a symmetrical, dome-shaped structure with a circular ‘footprint’, while Tfp retraction-deficient microcolonies were notably less symmetrical. These findings support a major role for Tfp retraction in microvilli and microcolony architecture. They are consistent with the biophysical attributes of Tfp and the effects of Tfp retraction on epithelial cell signalling.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.032656-0
2009-12-01
2020-04-10
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/12/4084.html?itemId=/content/journal/micro/10.1099/mic.0.032656-0&mimeType=html&fmt=ahah

References

  1. Achtman M., Neibert M., Crowe B. A., Strittmatter W., Kusecek B., Weyse E., Walsh M. J., Slawig B., Morelli G.. other authors 1988; Purification and characterization of eight class 5 outer membrane protein variants from a clone of Neisseria meningitidis serogroup A. J Exp Med168:507–525
    [Google Scholar]
  2. Andrade L. O., Andrews N. W.. 2004; Lysosomal fusion is essential for the retention of Trypanosoma cruzi inside host cells. J Exp Med200:1135–1143
    [Google Scholar]
  3. Ayala B. P., Vasquez B., Clary S., Tainer J. A., Rodland K., So M.. 2001; The pilus-induced Ca2+ flux triggers lysosome exocytosis and increases the amount of Lamp1 accessible to Neisseria IgA1 protease. Cell Microbiol3:265–275
    [Google Scholar]
  4. Ayala P., Wilbur J. S., Wetzler L. M., Tainer J. A., Snyder A., So M.. 2005; The pilus and porin of Neisseria gonorrhoeae cooperatively induce Ca2+ transients in infected epithelial cells. Cell Microbiol7:1736–1748
    [Google Scholar]
  5. Biais N., Ladoux B., Higashi D., So M., Sheetz M.. 2008; Cooperative retraction of bundled type IV pili enables nanonewton force generation. PLoS Biol6:e87
    [Google Scholar]
  6. Blom J., Gernow A., Holck S., Wewer V., Norgaard A., Graff L. B., Krasilnikoff P. A., Andersen L. P., Larsen S. O.. 2000; Different patterns of Helicobacter pylori adherence to gastric mucosa cells in children and adults. An ultrastructural study. Scand J Gastroenterol35:1033–1040
    [Google Scholar]
  7. Carbonnelle E., Helaine S., Prouvensier L., Nassif X., Pelicic V.. 2005; Type IV pilus biogenesis in Neisseria meningitidis: PilW is involved in a step occurring after pilus assembly, essential for fibre stability and function. Mol Microbiol55:54–64
    [Google Scholar]
  8. Craig L., Volkmann N., Arvai A. S., Pique M. E., Yeager M., Egelman E. H., Tainer J. A.. 2006; Type IV pilus structure by cryo-electron microscopy and crystallography: implications for pilus assembly and functions. Mol Cell23:651–662
    [Google Scholar]
  9. Edwards J. L., Shao J. Q., Ault K. A., Apicella M. A.. 2000; Neisseria gonorrhoeae elicits membrane ruffling and cytoskeletal rearrangements upon infection of primary human endocervical and ectocervical cells. Infect Immun68:5354–5363
    [Google Scholar]
  10. Elliott D. A.. 2007; Serial sectioning via microtomy. Microscopy Today15:30–33
    [Google Scholar]
  11. Elliott D. A., Clark D. P.. 2000; Cryptosporidium parvum induces host cell actin accumulation at the host–parasite interface. Infect Immun68:2315–2322
    [Google Scholar]
  12. Elliott D. A., McIntosh M. T., Hosgood H. D. III, Chen S., Zhang G., Baevova P., Joiner K. A.. 2008; Four distinct pathways of hemoglobin uptake in the malaria parasite Plasmodium falciparum. Proc Natl Acad Sci U S A105:2463–2468
    [Google Scholar]
  13. Evans B. A.. 1977; Ultrastructural study of cervical gonorrhea. J Infect Dis136:248–255
    [Google Scholar]
  14. Goosney D. L., DeVinney R., Finlay B. B.. 2001; Recruitment of cytoskeletal and signaling proteins to enteropathogenic and enterohemorrhagic Escherichia coli pedestals. Infect Immun69:3315–3322
    [Google Scholar]
  15. Griffiss J. M., Lammel C. J., Wang J., Dekker N. P., Brooks G. F.. 1999; Neisseria gonorrhoeae coordinately uses pili and Opa to activate HEC-1-B cell microvilli, which causes engulfment of the gonococci. Infect Immun67:3469–3480
    [Google Scholar]
  16. Higashi D. L., Lee S. W., Snyder A., Weyand N. J., Bakke A., So M.. 2007; Dynamics of Neisseria gonorrhoeae attachment: microcolony development, cortical plaque formation, and cytoprotection. Infect Immun75:4743–4753
    [Google Scholar]
  17. Holm A., Sundqvist T., Oberg A., Magnusson K. E.. 1999; Mechanical manipulation of polymorphonuclear leukocyte plasma membranes with optical tweezers causes influx of extracellular calcium through membrane channels. Med Biol Eng Comput37:410–412
    [Google Scholar]
  18. Hopper S., Wilbur J. S., Vasquez B. L., Larson J., Clary S., Mehr I. J., Seifert H. S., So M.. 2000; Isolation of Neisseria gonorrhoeae mutants that show enhanced trafficking across polarized T84 epithelial monolayers. Infect Immun68:896–905
    [Google Scholar]
  19. Howie H. L., Glogauer M., So M.. 2005; The N. gonorrhoeae type IV pilus stimulates mechanosensitive pathways and cytoprotection through a pilT-dependent mechanism. PLoS Biol3:e100
    [Google Scholar]
  20. Howie H. L., Shiflett S. L., So M.. 2008; Extracellular signal-regulated kinase activation by Neisseria gonorrhoeae downregulates epithelial cell proapoptotic proteins Bad and Bim. Infect Immun76:2715–2721
    [Google Scholar]
  21. Kwok T., Backert S., Schwarz H., Berger J., Meyer T. F.. 2002; Specific entry of Helicobacter pylori into cultured gastric epithelial cells via a zipper-like mechanism. Infect Immun70:2108–2120
    [Google Scholar]
  22. Larson J. A., Higashi D. L., Stojiljkovic I., So M.. 2002; Replication of Neisseria meningitidis within epithelial cells requires TonB-dependent acquisition of host cell iron. Infect Immun70:1461–1467
    [Google Scholar]
  23. Lee S. W., Higashi D. L., Snyder A., Merz A. J., Potter L., So M.. 2005; PilT is required for PI(3,4,5)P3-mediated crosstalk between Neisseria gonorrhoeae and epithelial cells. Cell Microbiol7:1271–1284
    [Google Scholar]
  24. Lin L., Ayala P., Larson J., Mulks M., Fukuda M., Carlsson S. R., Enns C., So M.. 1997; The Neisseria type 2 IgA1 protease cleaves LAMP1 and promotes survival of bacteria within epithelial cells. Mol Microbiol24:1083–1094
    [Google Scholar]
  25. Mattick J. S.. 2002; Type IV pili and twitching motility. Annu Rev Microbiol56:289–314
    [Google Scholar]
  26. McGee Z. A., Johnson A. P., Taylor-Robinson D.. 1981; Pathogenic mechanisms of Neisseria gonorrhoeae: observations on damage to human fallopian tubes in organ culture by gonococci of colony type 1 or type 4. J Infect Dis143:413–422
    [Google Scholar]
  27. McGee Z. A., Stephens D. S., Hoffman L. H., Schlech W. F. III, Horn R. G.. 1983; Mechanisms of mucosal invasion by pathogenic Neisseria. Rev Infect Dis5 (suppl. 4):S708–S714
    [Google Scholar]
  28. Merz A. J., So M.. 1997; Attachment of piliated, Opa- and Opc- gonococci and meningococci to epithelial cells elicits cortical actin rearrangements and clustering of tyrosine-phosphorylated proteins. Infect Immun65:4341–4349
    [Google Scholar]
  29. Merz A. J., So M.. 2000; Interactions of pathogenic neisseriae with epithelial cell membranes. Annu Rev Cell Dev Biol16:423–457
    [Google Scholar]
  30. Merz A. J., Rifenbery D. B., Arvidson C. G., So M.. 1996; Traversal of a polarized epithelium by pathogenic Neisseriae: facilitation by type IV pili and maintenance of epithelial barrier function. Mol Med2:745–754
    [Google Scholar]
  31. Merz A. J., Enns C. A., So M.. 1999; Type IV pili of pathogenic neisseriae elicit cortical plaque formation in epithelial cells. Mol Microbiol32:1316–1332
    [Google Scholar]
  32. Merz A. J., So M., Sheetz M. P.. 2000; Pilus retraction powers bacterial twitching motility. Nature407:98–102
    [Google Scholar]
  33. Mikaty G., Soyer M., Mairey E., Henry N., Dyer D., Forest K. T., Morand P., Guadagnini S., Prévost M. C.. other authors 2009; Extracellular bacterial pathogen induces host cell surface reorganization to resist shear stress. PLoS Pathog5:e1000314
    [Google Scholar]
  34. Mosleh I. M., Boxberger H. J., Sessler M. J., Meyer T. F.. 1997; Experimental infection of native human ureteral tissue with Neisseria gonorrhoeae: adhesion, invasion, intracellular fate, exocytosis, and passage through a stratified epithelium. Infect Immun65:3391–3398
    [Google Scholar]
  35. Opitz D., Clausen M., Maier B.. 2009; Dynamics of gonococcal type IV pili during infection. ChemPhysChem10:1614–1618
    [Google Scholar]
  36. Parge H. E., Forest K. T., Hickey M. J., Christensen D. A., Getzoff E. D., Tainer J. A.. 1995; Structure of the fibre-forming protein pilin at 2.6 Å resolution. Nature378:32–38
    [Google Scholar]
  37. Raucher D., Stauffer T., Chen W., Shen K., Guo S., York J. D., Sheetz M. P., Meyer T.. 2000; Phosphatidylinositol 4,5-bisphosphate functions as a second messenger that regulates cytoskeleton–plasma membrane adhesion. Cell100:221–228
    [Google Scholar]
  38. Sawada Y., Tamada M., Dubin-Thaler B. J., Cherniavskaya O., Sakai R., Tanaka S., Sheetz M. P.. 2006; Force sensing by mechanical extension of the Src family kinase substrate p130Cas. Cell127:1015–1026
    [Google Scholar]
  39. Schmidt C., Pommerenke H., Durr F., Nebe B., Rychly J.. 1998; Mechanical stressing of integrin receptors induces enhanced tyrosine phosphorylation of cytoskeletally anchored proteins. J Biol Chem273:5081–5085
    [Google Scholar]
  40. Segal E., Hagblom P., Seifert H. S., So M.. 1986; Antigenic variation of gonococcal pilus involves assembly of separated silent gene segments. Proc Natl Acad Sci U S A83:2177–2181
    [Google Scholar]
  41. Shao J. Y., Ting-Beall H. P., Hochmuth R. M.. 1998; Static and dynamic lengths of neutrophil microvilli. Proc Natl Acad Sci U S A95:6797–6802
    [Google Scholar]
  42. Shaw J. H., Falkow S.. 1988; Model for invasion of human tissue culture cells by Neisseria gonorrhoeae. Infect Immun56:1625–1632
    [Google Scholar]
  43. Steichen C. T., Shao J. Q., Ketterer M. R., Apicella M. A.. 2008; Gonococcal cervicitis: a role for biofilm in pathogenesis. J Infect Dis198:1856–1861
    [Google Scholar]
  44. Stephens D. S.. 1989; Gonococcal and meningococcal pathogenesis as defined by human cell, cell culture, and organ culture assays. Clin Microbiol Rev2:supplS104–S111
    [Google Scholar]
  45. Swanson J.. 1983; Gonococcal adherence: selected topics. Rev Infect Dis5 (suppl. 4):S678–S684
    [Google Scholar]
  46. Tjia K. F., van Putten J. P., Pels E., Zanen H. C.. 1988; The interaction between Neisseria gonorrhoeae and the human cornea in organ culture. An electron microscopic study. Graefes Arch Clin Exp Ophthalmol226:341–345
    [Google Scholar]
  47. Turner C. F., Rogers S. M., Miller H. G., Miller W. C., Gribble J. N., Chromy J. R., Leone P. A., Cooley P. C., Quinn T. C.. other authors 2002; Untreated gonococcal and chlamydial infection in a probability sample of adults. JAMA287:726–733
    [Google Scholar]
  48. Vonna L., Wiedemann A., Aepfelbacher M., Sackmann E.. 2003; Local force induced conical protrusions of phagocytic cells. J Cell Sci116:785–790
    [Google Scholar]
  49. Ward M. E., Watt P. J.. 1972; Adherence of Neisseria gonorrhoeae to urethral mucosal cells: an electron-microscopic study of human gonorrhea. J Infect Dis126:601–605
    [Google Scholar]
  50. Ward M. E., Watt P. J., Robertson J. N.. 1974; The human fallopian tube: a laboratory model for gonococcal infection. J Infect Dis129:650–659
    [Google Scholar]
  51. Weyand N. J., Lee S. W., Higashi D. L., Cawley D., Yoshihara P., So M.. 2006; Monoclonal antibody detection of CD46 clustering beneath Neisseria gonorrhoeae microcolonies. Infect Immun74:2428–2435
    [Google Scholar]
  52. Winther-Larsen H. C., Wolfgang M., Dunham S., van Putten J. P., Dorward D., Lovold C., Aas F. E., Koomey M.. 2005; A conserved set of pilin-like molecules controls type IV pilus dynamics and organelle-associated functions in Neisseria gonorrhoeae. Mol Microbiol56:903–917
    [Google Scholar]
  53. Wolfgang M., Lauer P., Park H. S., Brossay L., Hebert J., Koomey M.. 1998; PilT mutations lead to simultaneous defects in competence for natural transformation and twitching motility in piliated Neisseria gonorrhoeae. Mol Microbiol29:321–330
    [Google Scholar]
  54. Wolfgang M., van Putten J. P., Hayes S. F., Dorward D., Koomey M.. 2000; Components and dynamics of fiber formation define a ubiquitous biogenesis pathway for bacterial pili. EMBO J19:6408–6418
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.032656-0
Loading
/content/journal/micro/10.1099/mic.0.032656-0
Loading

Data & Media loading...

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error