1887

Abstract

Alternative sigma factor 54 (RpoN) is an important regulator of stress resistance and virulence genes in many bacterial species. In this study, we report on the gene expression alterations that follow inactivation in O157 : H7 strain Sakai (Sakai : : ), and the influence of RpoN on the acid resistance phenotype. Microarray gene expression profiling revealed the differential expression of 103 genes in Sakai : :  relative to Sakai. This included the growth-phase-dependent upregulation of genes required for glutamate-dependent acid resistance (GDAR) (, , and ), and the downregulation of locus of enterocyte effacement (LEE) genes, which encode a type III secretion system. Upregulation of genes in Sakai : :  during exponential growth correlated with increased GDAR and survival in a model stomach system. Complementation of Sakai : :  with a cloned version of restored acid susceptibility. Genes involved in GDAR regulation, including (sigma factor 38) and (acid-responsive regulator), were shown to be required for the survival of Sakai : :  by the GDAR mechanism. This study describes the contribution of to acid resistance and GDAR gene regulation, and reveals RpoN to be an important regulator of stress resistance and virulence genes in O157 : H7.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.032631-0
2010-03-01
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/3/719.html?itemId=/content/journal/micro/10.1099/mic.0.032631-0&mimeType=html&fmt=ahah

References

  1. Bergholz T. M., Whittam T. S. 2007; Variation in acid resistance among enterohaemorrhagic Escherichia coli in a simulated gastric environment. J Appl Microbiol 102:352–362
    [Google Scholar]
  2. Bergholz T. M., Tarr C. L., Christensen L. M., Betting D. J., Whittam T. S. 2007a; Recent gene conversions between duplicated glutamate decarboxylase genes ( gadA and gadB) in pathogenic Escherichia coli. Mol Biol Evol 24:2323–2333
    [Google Scholar]
  3. Bergholz T. M., Wick L. M., Qi W., Riordan J. T., Ouellette L. M., Whittam T. S. 2007b; Global transcriptional response of Escherichia coli O157 : H7 to growth transitions in glucose minimal medium. BMC Microbiol 7:97
    [Google Scholar]
  4. Bishop R. E., Leskiw B. K., Hodges R. S., Kay C. M., Weiner J. H. 1998; The entericidin locus of Escherichia coli and its implications for programmed bacterial cell death. J Mol Biol 280:583–596
    [Google Scholar]
  5. Bittner M., Saldias S., Estevez C., Zaldivar M., Marolda C. L., Valvano M. A., Contreras I. 2002; O-antigen expression in Salmonella enterica serovar Typhi is regulated by nitrogen availability through RpoN-mediated transcriptional control of the rfaH gene. Microbiology 148:3789–3799
    [Google Scholar]
  6. Bittner M., Saldias S., Altamirano F., Valvano M. A., Contreras I. 2004; RpoS and RpoN are involved in the growth-dependent regulation of rfaH transcription and O antigen expression in Salmonella enterica serovar Typhi. Microb Pathog 36:19–24
    [Google Scholar]
  7. Boardman B. K., He M., Ouyang Z., Xu H., Pang X., Yang X. F. 2008; Essential role of the response regulator Rrp2 in the infectious cycle of Borrelia burgdorferi. Infect Immun 76:3844–3853
    [Google Scholar]
  8. Bohannon D. E., Connell N., Keener J., Tormo A., Espinosa-Urgel M., Zambrano M. M., Kolter R. 1991; Stationary-phase-inducible “gearbox” promoters: differential effects of katF mutations and role of sigma70. J Bacteriol 173:4482–4492
    [Google Scholar]
  9. Canales R. D., Luo Y., Willey J. C., Austermiller B., Barbacioru C. C., Boysen C., Hunkapiller K., Jensen R. V., Knight C. R. other authors 2006; Evaluation of DNA microarray results with quantitative gene expression platforms. Nat Biotechnol 24:1115–1122
    [Google Scholar]
  10. Castanie-Cornet M. P., Penfound T. A., Smith D., Elliott J. F., Foster J. W. 1999; Control of acid resistance in Escherichia coli. J Bacteriol 181:3525–3535
    [Google Scholar]
  11. Chart H. 2000; VTEC enteropathogenicity. Symp Ser Soc Appl Microbiol 29:12S–23S
    [Google Scholar]
  12. Crawford J. A., Blank T. E., Kaper J. B. 2002; The LEE-encoded type III secretion system in EPEC and EHEC: assembly, function and regulation. In Escherichia coli, Virulence Mechanisms of a Versatile Pathogen pp 337–359 Edited by Donnenberg M. S. San Diego, CA: Academic Press;
    [Google Scholar]
  13. Dalet K., Briand C., Cenatiempo Y., Hechard Y. 2000; The rpoN gene of Enterococcus faecalis directs sensitivity to subclass IIa bacteriocins. Curr Microbiol 41:441–443
    [Google Scholar]
  14. Darwin A. J. 2005; The phage-shock-protein response. Mol Microbiol 57:621–628
    [Google Scholar]
  15. Datsenko K. A., Wanner B. L. 2000; One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 97:6640–6645
    [Google Scholar]
  16. De Biase D., Tramonti A., Bossa F., Visca P. 1999; The response to stationary-phase stress conditions in Escherichia coli: role and regulation of the glutamic acid decarboxylase system. Mol Microbiol 32:1198–1211
    [Google Scholar]
  17. Dong T., Kirchhof M. G., Schellhorn H. E. 2007 RpoS regulation of gene expression during exponential growth of Escherichia coli K12. Molecular Genetics and Genomics Berlin: Springer;
    [Google Scholar]
  18. Donnenberg M. S., Whittam T. S. 2001; Pathogenesis and evolution of virulence in enteropathogenic and enterohemorrhagic Escherichia coli. J Clin Invest 107:539–548
    [Google Scholar]
  19. Foster J. W. 2004; Escherichia coli acid resistance: tales of an amateur acidophile. Nat Rev Microbiol 2:898–907
    [Google Scholar]
  20. Gentry D. R., Hernandez V. J., Nguyen L. H., Jensen D. B., Cashel M. 1993; Synthesis of the stationary-phase sigma factor sigma s is positively regulated by ppGpp. J Bacteriol 175:7982–7989
    [Google Scholar]
  21. Giaever H. M., Styrvold O. B., Kaasen I., Strom A. R. 1988; Biochemical and genetic characterization of osmoregulatory trehalose synthesis in Escherichia coli. J Bacteriol 170:2841–2849
    [Google Scholar]
  22. Giangrossi M., Zattoni S., Tramonti A., De Biase D., Falconi M. 2005; Antagonistic role of H-NS and GadX in the regulation of the glutamate decarboxylase-dependent acid resistance system in Escherichia coli. J Biol Chem 280:21498–21505
    [Google Scholar]
  23. Gorden J., Small P. L. 1993; Acid resistance in enteric bacteria. Infect Immun 61:364–367
    [Google Scholar]
  24. Hengge-Aronis R. 2000; The general stress response in Escherichia coli. In Bacterial Stress Responses pp 161–178 Edited by Storz G., Hengge-Aronis R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  25. Hengge-Aronis R., Fischer D. 1992; Identification and molecular analysis of glgS, a novel growth-phase-regulated and rpoS-dependent gene involved in glycogen synthesis in Escherichia coli. Mol Microbiol 6:1877–1886
    [Google Scholar]
  26. Hengge-Aronis R., Klein W., Lange R., Rimmele M., Boos W. 1991; Trehalose synthesis genes are controlled by the putative sigma factor encoded by rpoS and are involved in stationary-phase thermotolerance in Escherichia coli. J Bacteriol 173:7918–7924
    [Google Scholar]
  27. Hubner A., Yang X., Nolen D. M., Popova T. G., Cabello F. C., Norgard M. V. 2001; Expression of Borrelia burgdorferi OspC and DbpA is controlled by a RpoN-RpoS regulatory pathway. Proc Natl Acad Sci U S A 98:12724–12729
    [Google Scholar]
  28. Iyoda S., Watanabe H. 2005; ClpXP protease controls expression of the type III protein secretion system through regulation of RpoS and GrlR levels in enterohemorrhagic Escherichia coli. J Bacteriol 187:4086–4094
    [Google Scholar]
  29. Jishage M., Ishihama A. 1997; Variation in RNA polymerase sigma subunit composition within different stocks of Escherichia coli W3110. J Bacteriol 179:959–963
    [Google Scholar]
  30. Jishage M., Iwata A., Ueda S., Ishihama A. 1996; Regulation of RNA polymerase sigma subunit synthesis in Escherichia coli: intracellular levels of four species of sigma subunit under various growth conditions. J Bacteriol 178:5447–5451
    [Google Scholar]
  31. Jovanovic M., Lilic M., Janjusevic R., Jovanovic G., Savic D. J. 1999; tRNA synthetase mutants of Escherichia coli K-12 are resistant to the gyrase inhibitor novobiocin. J Bacteriol 181:2979–2983
    [Google Scholar]
  32. Kailasan Vanaja S., Bergholz T. M., Whittam T. S. 2009; Characterization of the Escherichia coli O157 : H7 Sakai GadE regulon. J Bacteriol 191:1868–1877
    [Google Scholar]
  33. Kanai T., Takahashi K., Inoue H. 2006; Three distinct-type glutathione S-transferases from Escherichia coli important for defense against oxidative stress. J Biochem 140:703–711
    [Google Scholar]
  34. Laaberki M. H., Janabi N., Oswald E., Repoila F. 2006; Concert of regulators to switch on LEE expression in enterohemorrhagic Escherichia coli O157 : H7: interplay between Ler, GrlA, HNS and RpoS. Int J Med Microbiol 296:197–210
    [Google Scholar]
  35. Lange R., Hengge-Aronis R. 1991; Identification of a central regulator of stationary-phase gene expression in Escherichia coli. Mol Microbiol 5:49–59
    [Google Scholar]
  36. Large T. M., Walk S. T., Whittam T. S. 2005; Variation in acid resistance among shiga toxin-producing clones of pathogenic Escherichia coli. Appl Environ Microbiol 71:2493–2500
    [Google Scholar]
  37. Livak K. J., Schmittgen T. D. 2001; Analysis of relative gene expression data using real-time quantitative PCR and the method. Methods 25:402–408
    [Google Scholar]
  38. Ma Z., Richard H., Tucker D. L., Conway T., Foster J. W. 2002; Collaborative regulation of Escherichia coli glutamate-dependent acid resistance by two AraC-like regulators, GadX and GadW (YhiW). J Bacteriol 184:7001–7012
    [Google Scholar]
  39. Ma Z., Richard H., Foster J. W. 2003; pH-Dependent modulation of cyclic AMP levels and GadW-dependent repression of RpoS affect synthesis of the GadX regulator and Escherichia coli acid resistance. J Bacteriol 185:6852–6859
    [Google Scholar]
  40. Manning S. D., Motiwala A. S., Springman A. C., Qi W., Lacher D. W., Ouellette L. M., Mladonicky J. M., Somsel P., Rudrik J. T. other authors 2008; Variation in virulence among clades of Escherichia coli O157 : H7 associated with disease outbreaks. Proc Natl Acad Sci U S A 105:4868–4873
    [Google Scholar]
  41. Masuda N., Church G. M. 2003; Regulatory network of acid resistance genes in Escherichia coli. Mol Microbiol 48:699–712
    [Google Scholar]
  42. Matz C., Moreno A. M., Alhede M., Manefield M., Hauser A. R., Givskov M., Kjelleberg S. 2008; Pseudomonas aeruginosa uses type III secretion system to kill biofilm-associated amoebae. ISME J 2:843–852
    [Google Scholar]
  43. Mead P. S., Griffin P. M. 1998; Escherichia coli O157 : H7. Lancet 352:1207–1212
    [Google Scholar]
  44. Mead P. S., Slutsker L., Dietz V., McCaig L. F., Bresee J. S., Shapiro C., Griffin P. M., Tauxe R. V. 1999; Food-related illness and death in the United States. Emerg Infect Dis 5:607–625
    [Google Scholar]
  45. Michino H., Araki K., Minami S., Takaya S., Sakai N., Miyazaki M., Ono A., Yanagawa H. 1999; Massive outbreak of Escherichia coli O157 : H7 infection in schoolchildren in Sakai City, Japan, associated with consumption of white radish sprouts. Am J Epidemiol 150:787–796
    [Google Scholar]
  46. Model P., Jovanovic G., Dworkin J. 1997; The Escherichia coli phage-shock-protein ( psp) operon. Mol Microbiol 24:255–261
    [Google Scholar]
  47. Murphy K. C., Campellone K. G. 2003; Lambda Red-mediated recombinogenic engineering of enterohemorrhagic and enteropathogenic E. coli. BMC Mol Biol 4:11
    [Google Scholar]
  48. Okada Y., Okada N., Makino S., Asakura H., Yamamoto S., Igimi S. 2006; The sigma factor RpoN (sigma54) is involved in osmotolerance in Listeria monocytogenes. FEMS Microbiol Lett 263:54–60
    [Google Scholar]
  49. Pallen M. 1999; RpoN-dependent transcription of rpoH?. Mol Microbiol 31:393
    [Google Scholar]
  50. Perna N. T., Mayhew G. F., Posfai G., Elliott S., Donnenberg M. S., Kaper J. B., Blattner F. R. 1998; Molecular evolution of a pathogenicity island from enterohemorrhagic Escherichia coli O157 : H7. Infect Immun 66:3810–3817
    [Google Scholar]
  51. Reitzer L., Schneider B. L. 2001; Metabolic context and possible physiological themes of sigma54-dependent genes in Escherichia coli. Microbiol Mol Biol Rev 65:422–444
    [Google Scholar]
  52. Reitzer L. J., Bueno R., Cheng W. D., Abrams S. A., Rothstein D. M., Hunt T. P., Tyler B., Magasanik B. 1987; Mutations that create new promoters suppress the sigma54 dependence of glnA transcription in Escherichia coli. J Bacteriol 169:4279–4284
    [Google Scholar]
  53. Robichon D., Gouin E., Debarbouille M., Cossart P., Cenatiempo Y., Hechard Y. 1997; The rpoN (sigma54) gene from Listeria monocytogenes is involved in resistance to mesentericin Y105, an antibacterial peptide from Leuconostoc mesenteroides. J Bacteriol 179:7591–7594
    [Google Scholar]
  54. Russell R. M., Sharp F. C., Rasko D. A., Sperandio V. 2007; QseA and GrlR/GrlA regulation of the locus of enterocyte effacement genes in enterohemorrhagic Escherichia coli. J Bacteriol 189:5387–5392
    [Google Scholar]
  55. Skibinski D. A., Golby P., Chang Y. S., Sargent F., Hoffman R., Harper R., Guest J. R., Attwood M. M., Berks B. C., Andrews S. C. 2002; Regulation of the hydrogenase-4 operon of Escherichia coli by the sigma54-dependent transcriptional activators FhlA and HyfR. J Bacteriol 184:6642–6653
    [Google Scholar]
  56. Spears K. J., Roe A. J., Gally D. L. 2006; A comparison of enteropathogenic and enterohaemorrhagic Escherichia coli pathogenesis. FEMS Microbiol Lett 255:187–202
    [Google Scholar]
  57. Subramanian A., Tamayo P., Mootha V. K., Mukherjee S., Ebert B. L., Gillette M. A., Paulovich A., Pomeroy S. L., Golub T. R. other authors 2005; Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A 102:15545–15550
    [Google Scholar]
  58. Tatsuno I., Nagano K., Taguchi K., Rong L., Mori H., Sasakawa C. 2003; Increased adherence to Caco-2 cells caused by disruption of the yhiE and yhiF genes in enterohemorrhagic Escherichia coli O157 : H7. Infect Immun 71:2598–2606
    [Google Scholar]
  59. Teunis P., Takumi K., Shinagawa K. 2004; Dose response for infection by Escherichia coli O157 : H7 from outbreak data. Risk Anal 24:401–407
    [Google Scholar]
  60. Tramonti A., Visca P., De Canio M., Falconi M., De Biase D. 2002; Functional characterization and regulation of gadX, a gene encoding an AraC/XylS-like transcriptional activator of the Escherichia coli glutamic acid decarboxylase system. J Bacteriol 184:2603–2613
    [Google Scholar]
  61. Tramonti A., De Canio M., Delany I., Scarlato V., De Biase D. 2006; Mechanisms of transcription activation exerted by GadX and GadW at the gadA and gadBC gene promoters of the glutamate-based acid resistance system in Escherichia coli. J Bacteriol 188:8118–8127
    [Google Scholar]
  62. Tucker D. L., Tucker N., Conway T. 2002; Gene expression profiling of the pH response in Escherichia coli. J Bacteriol 184:6551–6558
    [Google Scholar]
  63. Tusher V. G., Tibshirani R., Chu G. 2001; Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci U S A 98:5116–5121
    [Google Scholar]
  64. Vogel J., Axmann I. M., Herzel H., Hess W. R. 2003; Experimental and computational analysis of transcriptional start sites in the cyanobacterium Prochlorococcus MED4. Nucleic Acids Res 31:2890–2899
    [Google Scholar]
  65. Wadington M. C., Ladner J. E., Stourman N. V., Harp J. M., Armstrong R. N. 2009; Analysis of the structure and function of YfcG from Escherichia coli reveals an efficient and unique disulfide bond reductase. Biochemistry 48:6559–6561
    [Google Scholar]
  66. Weber H., Polen T., Heuveling J., Wendisch V. F., Hengge R. 2005; Genome-wide analysis of the general stress response network in Escherichia coli: sigmaS-dependent genes, promoters, and sigma factor selectivity. J Bacteriol 187:1591–1603
    [Google Scholar]
  67. Weiner L., Brissette J. L., Model P. 1991; Stress-induced expression of the Escherichia coli phage shock protein operon is dependent on sigma54 and modulated by positive and negative feedback mechanisms. Genes Dev 5:1912–1923
    [Google Scholar]
  68. Yang X. F., Lybecker M. C., Pal U., Alani S. M., Blevins J., Revel A. T., Samuels D. S., Norgard M. V. 2005; Analysis of the ospC regulatory element controlled by the RpoN-RpoS regulatory pathway in Borrelia burgdorferi. J Bacteriol 187:4822–4829
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.032631-0
Loading
/content/journal/micro/10.1099/mic.0.032631-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF

Supplementary material 3

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error