1887

Abstract

Alternative sigma factor 54 (RpoN) is an important regulator of stress resistance and virulence genes in many bacterial species. In this study, we report on the gene expression alterations that follow inactivation in O157 : H7 strain Sakai (Sakai : : ), and the influence of RpoN on the acid resistance phenotype. Microarray gene expression profiling revealed the differential expression of 103 genes in Sakai : :  relative to Sakai. This included the growth-phase-dependent upregulation of genes required for glutamate-dependent acid resistance (GDAR) (, , and ), and the downregulation of locus of enterocyte effacement (LEE) genes, which encode a type III secretion system. Upregulation of genes in Sakai : :  during exponential growth correlated with increased GDAR and survival in a model stomach system. Complementation of Sakai : :  with a cloned version of restored acid susceptibility. Genes involved in GDAR regulation, including (sigma factor 38) and (acid-responsive regulator), were shown to be required for the survival of Sakai : :  by the GDAR mechanism. This study describes the contribution of to acid resistance and GDAR gene regulation, and reveals RpoN to be an important regulator of stress resistance and virulence genes in O157 : H7.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.032631-0
2010-03-01
2019-11-22
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/3/719.html?itemId=/content/journal/micro/10.1099/mic.0.032631-0&mimeType=html&fmt=ahah

References

  1. Bergholz, T. M. & Whittam, T. S. ( 2007; ). Variation in acid resistance among enterohaemorrhagic Escherichiacoli in a simulated gastric environment. J Appl Microbiol 102, 352–362.
    [Google Scholar]
  2. Bergholz, T. M., Tarr, C. L., Christensen, L. M., Betting, D.J. & Whittam, T. S. ( 2007a; ). Recent gene conversionsbetween duplicated glutamate decarboxylase genes (gadA and gadB) in pathogenic Escherichia coli. Mol BiolEvol 24, 2323–2333.
    [Google Scholar]
  3. Bergholz, T. M., Wick, L. M., Qi, W., Riordan, J. T., Ouellette,L. M. & Whittam, T. S. ( 2007b; ). Global transcriptionalresponse of Escherichia coli O157 : H7 to growth transitionsin glucose minimal medium. BMC Microbiol 7, 97 [CrossRef]
    [Google Scholar]
  4. Bishop, R. E., Leskiw, B. K., Hodges, R. S., Kay, C. M. &Weiner, J. H. ( 1998; ). The entericidin locus of Escherichia coli and its implications for programmed bacterial cell death. J Mol Biol 280, 583–596.[CrossRef]
    [Google Scholar]
  5. Bittner, M., Saldias, S., Estevez, C., Zaldivar, M., Marolda,C. L., Valvano, M. A. & Contreras, I. ( 2002; ).O-antigen expression in Salmonella enterica serovar Typhi is regulatedby nitrogen availability through RpoN-mediated transcriptional control ofthe rfaH gene. Microbiology 148, 3789–3799.
    [Google Scholar]
  6. Bittner, M., Saldias, S., Altamirano, F., Valvano, M. A. &Contreras, I. ( 2004; ). RpoS and RpoN are involved inthe growth-dependent regulation of rfaH transcription and O antigenexpression in Salmonella enterica serovar Typhi. MicrobPathog 36, 19–24.
    [Google Scholar]
  7. Boardman, B. K., He, M., Ouyang, Z., Xu, H., Pang, X. &Yang, X. F. ( 2008; ). Essential role of the responseregulator Rrp2 in the infectious cycle of Borrelia burgdorferi. Infect Immun 76, 3844–3853.[CrossRef]
    [Google Scholar]
  8. Bohannon, D. E., Connell, N., Keener, J., Tormo, A., Espinosa-Urgel,M., Zambrano, M. M. & Kolter, R. ( 1991; ). Stationary-phase-inducible “gearbox”promoters: differential effects of katF mutations and role of sigma70. J Bacteriol 173, 4482–4492.
    [Google Scholar]
  9. Canales, R. D., Luo, Y., Willey, J. C., Austermiller, B., Barbacioru,C. C., Boysen, C., Hunkapiller, K., Jensen, R. V., Knight, C. R. & otherauthors ( 2006; ). Evaluation of DNA microarray resultswith quantitative gene expression platforms. Nat Biotechnol 24, 1115–1122.[CrossRef]
    [Google Scholar]
  10. Castanie-Cornet, M. P., Penfound, T. A., Smith, D., Elliott,J. F. & Foster, J. W. ( 1999; ). Control of acidresistance in Escherichia coli. J Bacteriol 181, 3525–3535.
    [Google Scholar]
  11. Chart, H. ( 2000; ). VTEC enteropathogenicity. Symp Ser Soc Appl Microbiol 29, 12S–23S.
    [Google Scholar]
  12. Crawford, J. A., Blank, T. E. & Kaper, J. B. ( 2002; ). The LEE-encoded type III secretion system in EPEC and EHEC:assembly, function and regulation. In Escherichia coli, Virulence Mechanismsof a Versatile Pathogen, pp. 337–359. Edited by M. S. Donnenberg.San Diego, CA: Academic Press.
  13. Dalet, K., Briand, C., Cenatiempo, Y. & Hechard, Y. ( 2000; ). The rpoN gene of Enterococcus faecalis directssensitivity to subclass IIa bacteriocins. Curr Microbiol 41, 441–443.[CrossRef]
    [Google Scholar]
  14. Darwin, A. J. ( 2005; ). The phage-shock-proteinresponse. Mol Microbiol 57, 621–628.[CrossRef]
    [Google Scholar]
  15. Datsenko, K. A. & Wanner, B. L. ( 2000; ). One-step inactivation of chromosomal genes in Escherichia coliK-12 using PCR products. Proc Natl Acad Sci U S A 97, 6640–6645.[CrossRef]
    [Google Scholar]
  16. De Biase, D., Tramonti, A., Bossa, F. & Visca, P. ( 1999; ). The response to stationary-phase stress conditionsin Escherichia coli: role and regulation of the glutamic acid decarboxylasesystem. Mol Microbiol 32, 1198–1211.[CrossRef]
    [Google Scholar]
  17. Dong, T., Kirchhof, M. G. & Schellhorn, H. E. ( 2007; ). RpoS regulation of gene expression during exponential growthof Escherichia coli K12. Molecular Genetics and Genomics.Berlin: Springer
  18. Donnenberg, M. S. & Whittam, T. S. ( 2001; ). Pathogenesis and evolution of virulence in enteropathogenic and enterohemorrhagic Escherichia coli. J Clin Invest 107, 539–548.[CrossRef]
    [Google Scholar]
  19. Foster, J. W. ( 2004; ). Escherichiacoli acid resistance: tales of an amateur acidophile. NatRev Microbiol 2, 898–907.
    [Google Scholar]
  20. Gentry, D. R., Hernandez, V. J., Nguyen, L. H., Jensen, D. B. &Cashel, M. ( 1993; ). Synthesis of the stationary-phasesigma factor sigma s is positively regulated by ppGpp. J Bacteriol 175, 7982–7989.
    [Google Scholar]
  21. Giaever, H. M., Styrvold, O. B., Kaasen, I. & Strom, A.R. ( 1988; ). Biochemical and genetic characterizationof osmoregulatory trehalose synthesis in Escherichia coli. J Bacteriol 170, 2841–2849.
    [Google Scholar]
  22. Giangrossi, M., Zattoni, S., Tramonti, A., De Biase, D. &Falconi, M. ( 2005; ). Antagonistic role of H-NS andGadX in the regulation of the glutamate decarboxylase-dependent acid resistancesystem in Escherichia coli. J Biol Chem 280, 21498–21505.[CrossRef]
    [Google Scholar]
  23. Gorden, J. & Small, P. L. ( 1993; ).Acid resistance in enteric bacteria. Infect Immun 61, 364–367.
    [Google Scholar]
  24. Hengge-Aronis, R. ( 2000; ). The generalstress response in Escherichia coli. In Bacterial Stress Responses, pp. 161–178. Edited by G. Storz & R. Hengge-Aronis. Washington,DC: American Society for Microbiology.
  25. Hengge-Aronis, R. & Fischer, D. ( 1992; ). Identification and molecular analysis of glgS, a novel growth-phase-regulatedand rpoS-dependent gene involved in glycogen synthesis in Escherichiacoli. Mol Microbiol 6, 1877–1886.[CrossRef]
    [Google Scholar]
  26. Hengge-Aronis, R., Klein, W., Lange, R., Rimmele, M. & Boos,W. ( 1991; ). Trehalose synthesis genes are controlledby the putative sigma factor encoded by rpoS and are involved instationary-phase thermotolerance in Escherichia coli. J Bacteriol 173, 7918–7924.
    [Google Scholar]
  27. Hubner, A., Yang, X., Nolen, D. M., Popova, T. G., Cabello,F. C. & Norgard, M. V. ( 2001; ). Expression of Borrelia burgdorferi OspC and DbpA is controlled by a RpoN-RpoS regulatorypathway. Proc Natl Acad Sci U S A 98, 12724–12729.[CrossRef]
    [Google Scholar]
  28. Iyoda, S. & Watanabe, H. ( 2005; ).ClpXP protease controls expression of the type III protein secretion systemthrough regulation of RpoS and GrlR levels in enterohemorrhagic Escherichiacoli. J Bacteriol 187, 4086–4094.[CrossRef]
    [Google Scholar]
  29. Jishage, M. & Ishihama, A. ( 1997; ).Variation in RNA polymerase sigma subunit composition within different stocksof Escherichia coli W3110. J Bacteriol 179, 959–963.
    [Google Scholar]
  30. Jishage, M., Iwata, A., Ueda, S. & Ishihama, A. ( 1996; ). Regulation of RNA polymerase sigma subunit synthesisin Escherichia coli: intracellular levels of four species of sigmasubunit under various growth conditions. J Bacteriol 178, 5447–5451.
    [Google Scholar]
  31. Jovanovic, M., Lilic, M., Janjusevic, R., Jovanovic, G. &Savic, D. J. ( 1999; ). tRNA synthetase mutants of Escherichia coli K-12 are resistant to the gyrase inhibitor novobiocin. J Bacteriol 181, 2979–2983.
    [Google Scholar]
  32. Kailasan Vanaja, S., Bergholz, T. M. & Whittam, T. S. ( 2009; ). Characterization of the Escherichia coliO157 : H7 Sakai GadE regulon. J Bacteriol 191, 1868–1877.[CrossRef]
    [Google Scholar]
  33. Kanai, T., Takahashi, K. & Inoue, H. ( 2006; ). Three distinct-type glutathione S-transferases from Escherichia coli important for defense against oxidative stress. J Biochem 140, 703–711.[CrossRef]
    [Google Scholar]
  34. Laaberki, M. H., Janabi, N., Oswald, E. & Repoila, F. ( 2006; ). Concert of regulators to switch on LEE expressionin enterohemorrhagic Escherichia coli O157 : H7: interplaybetween Ler, GrlA, HNS and RpoS. Int J Med Microbiol 296, 197–210.[CrossRef]
    [Google Scholar]
  35. Lange, R. & Hengge-Aronis, R. ( 1991; ). Identification of a central regulator of stationary-phase gene expressionin Escherichia coli. Mol Microbiol 5, 49–59.[CrossRef]
    [Google Scholar]
  36. Large, T. M., Walk, S. T. & Whittam, T. S. ( 2005; ). Variation in acid resistance among shiga toxin-producingclones of pathogenic Escherichia coli. Appl Environ Microbiol 71, 2493–2500.[CrossRef]
    [Google Scholar]
  37. Livak, K. J. & Schmittgen, T. D. ( 2001; ). Analysis of relative gene expression data using real-time quantitativePCR and the method. Methods 25, 402–408.[CrossRef]
    [Google Scholar]
  38. Ma, Z., Richard, H., Tucker, D. L., Conway, T. & Foster,J. W. ( 2002; ). Collaborative regulation of Escherichiacoli glutamate-dependent acid resistance by two AraC-like regulators,GadX and GadW (YhiW). J Bacteriol 184, 7001–7012.[CrossRef]
    [Google Scholar]
  39. Ma, Z., Richard, H. & Foster, J. W. ( 2003; ). pH-Dependent modulation of cyclic AMP levels and GadW-dependent repressionof RpoS affect synthesis of the GadX regulator and Escherichia coliacid resistance. J Bacteriol 185, 6852–6859.[CrossRef]
    [Google Scholar]
  40. Manning, S. D., Motiwala, A. S., Springman, A. C., Qi, W., Lacher,D. W., Ouellette, L. M., Mladonicky, J. M., Somsel, P., Rudrik, J. T. &other authors ( 2008; ). Variation in virulence amongclades of Escherichia coli O157 : H7 associated withdisease outbreaks. Proc Natl Acad Sci U S A 105, 4868–4873.[CrossRef]
    [Google Scholar]
  41. Masuda, N. & Church, G. M. ( 2003; ).Regulatory network of acid resistance genes in Escherichia coli. Mol Microbiol 48, 699–712.[CrossRef]
    [Google Scholar]
  42. Matz, C., Moreno, A. M., Alhede, M., Manefield, M., Hauser,A. R., Givskov, M. & Kjelleberg, S. ( 2008; ). Pseudomonas aeruginosa uses type III secretion system to kill biofilm-associatedamoebae. ISME J 2, 843–852.[CrossRef]
    [Google Scholar]
  43. Mead, P. S. & Griffin, P. M. ( 1998; ). Escherichia coli O157 : H7. Lancet 352, 1207–1212.[CrossRef]
    [Google Scholar]
  44. Mead, P. S., Slutsker, L., Dietz, V., McCaig, L. F., Bresee,J. S., Shapiro, C., Griffin, P. M. & Tauxe, R. V. ( 1999; ). Food-related illness and death in the United States. EmergInfect Dis 5, 607–625.
    [Google Scholar]
  45. Michino, H., Araki, K., Minami, S., Takaya, S., Sakai, N., Miyazaki,M., Ono, A. & Yanagawa, H. ( 1999; ). Massive outbreakof Escherichia coli O157 : H7 infection in schoolchildrenin Sakai City, Japan, associated with consumption of white radish sprouts. Am J Epidemiol 150, 787–796.[CrossRef]
    [Google Scholar]
  46. Model, P., Jovanovic, G. & Dworkin, J. ( 1997; ). The Escherichia coli phage-shock-protein (psp) operon. Mol Microbiol 24, 255–261.[CrossRef]
    [Google Scholar]
  47. Murphy, K. C. & Campellone, K. G. ( 2003; ). Lambda Red-mediated recombinogenic engineering of enterohemorrhagic andenteropathogenic E. coli. BMC Mol Biol 4, 11 [CrossRef]
    [Google Scholar]
  48. Okada, Y., Okada, N., Makino, S., Asakura, H., Yamamoto, S. &Igimi, S. ( 2006; ). The sigma factor RpoN (sigma54) is involved in osmotolerance in Listeria monocytogenes. FEMS Microbiol Lett 263, 54–60.[CrossRef]
    [Google Scholar]
  49. Pallen, M. ( 1999; ). RpoN-dependent transcriptionof rpoH? Mol Microbiol 31, 393 [CrossRef]
    [Google Scholar]
  50. Perna, N. T., Mayhew, G. F., Posfai, G., Elliott, S., Donnenberg,M. S., Kaper, J. B. & Blattner, F. R. ( 1998; ).Molecular evolution of a pathogenicity island from enterohemorrhagic Escherichia coli O157 : H7. Infect Immun 66, 3810–3817.
    [Google Scholar]
  51. Reitzer, L. & Schneider, B. L. ( 2001; ). Metabolic context and possible physiological themes of sigma54-dependentgenes in Escherichia coli. Microbiol Mol Biol Rev 65, 422–444.[CrossRef]
    [Google Scholar]
  52. Reitzer, L. J., Bueno, R., Cheng, W. D., Abrams, S. A., Rothstein,D. M., Hunt, T. P., Tyler, B. & Magasanik, B. ( 1987; ). Mutations that create new promoters suppress the sigma54 dependenceof glnA transcription in Escherichia coli. JBacteriol 169, 4279–4284.
    [Google Scholar]
  53. Robichon, D., Gouin, E., Debarbouille, M., Cossart, P., Cenatiempo,Y. & Hechard, Y. ( 1997; ). The rpoN (sigma54) gene from Listeria monocytogenes is involved in resistanceto mesentericin Y105, an antibacterial peptide from Leuconostoc mesenteroides. J Bacteriol 179, 7591–7594.
    [Google Scholar]
  54. Russell, R. M., Sharp, F. C., Rasko, D. A. & Sperandio,V. ( 2007; ). QseA and GrlR/GrlA regulation of thelocus of enterocyte effacement genes in enterohemorrhagic Escherichiacoli. J Bacteriol 189, 5387–5392.[CrossRef]
    [Google Scholar]
  55. Skibinski, D. A., Golby, P., Chang, Y. S., Sargent, F., Hoffman,R., Harper, R., Guest, J. R., Attwood, M. M., Berks, B. C. & Andrews,S. C. ( 2002; ). Regulation of the hydrogenase-4 operonof Escherichia coli by the sigma54-dependent transcriptionalactivators FhlA and HyfR. J Bacteriol 184, 6642–6653.[CrossRef]
    [Google Scholar]
  56. Spears, K. J., Roe, A. J. & Gally, D. L. ( 2006; ). A comparison of enteropathogenic and enterohaemorrhagic Escherichia coli pathogenesis. FEMS Microbiol Lett 255, 187–202.[CrossRef]
    [Google Scholar]
  57. Subramanian, A., Tamayo, P., Mootha, V. K., Mukherjee, S., Ebert,B. L., Gillette, M. A., Paulovich, A., Pomeroy, S. L., Golub, T. R. &other authors ( 2005; ). Gene set enrichment analysis:a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A 102, 15545–15550.[CrossRef]
    [Google Scholar]
  58. Tatsuno, I., Nagano, K., Taguchi, K., Rong, L., Mori, H. &Sasakawa, C. ( 2003; ). Increased adherence to Caco-2cells caused by disruption of the yhiE and yhiF genes inenterohemorrhagic Escherichia coli O157 : H7. Infect Immun 71, 2598–2606.[CrossRef]
    [Google Scholar]
  59. Teunis, P., Takumi, K. & Shinagawa, K. ( 2004; ). Dose response for infection by Escherichia coli O157 : H7from outbreak data. Risk Anal 24, 401–407.[CrossRef]
    [Google Scholar]
  60. Tramonti, A., Visca, P., De Canio, M., Falconi, M. & DeBiase, D. ( 2002; ). Functional characterization andregulation of gadX, a gene encoding an AraC/XylS-like transcriptionalactivator of the Escherichia coli glutamic acid decarboxylase system. J Bacteriol 184, 2603–2613.[CrossRef]
    [Google Scholar]
  61. Tramonti, A., De Canio, M., Delany, I., Scarlato, V. & DeBiase, D. ( 2006; ). Mechanisms of transcription activationexerted by GadX and GadW at the gadA and gadBC gene promotersof the glutamate-based acid resistance system in Escherichia coli. J Bacteriol 188, 8118–8127.[CrossRef]
    [Google Scholar]
  62. Tucker, D. L., Tucker, N. & Conway, T. ( 2002; ). Gene expression profiling of the pH response in Escherichiacoli. J Bacteriol 184, 6551–6558.[CrossRef]
    [Google Scholar]
  63. Tusher, V. G., Tibshirani, R. & Chu, G. ( 2001; ). Significance analysis of microarrays applied to the ionizingradiation response. Proc Natl Acad Sci U S A 98, 5116–5121.[CrossRef]
    [Google Scholar]
  64. Vogel, J., Axmann, I. M., Herzel, H. & Hess, W. R. ( 2003; ). Experimental and computational analysis of transcriptionalstart sites in the cyanobacterium Prochlorococcus MED4. Nucleic Acids Res 31, 2890–2899.[CrossRef]
    [Google Scholar]
  65. Wadington, M. C., Ladner, J. E., Stourman, N. V., Harp, J. M. &Armstrong, R. N. ( 2009; ). Analysis of the structureand function of YfcG from Escherichia coli reveals an efficient andunique disulfide bond reductase. Biochemistry 48, 6559–6561.[CrossRef]
    [Google Scholar]
  66. Weber, H., Polen, T., Heuveling, J., Wendisch, V. F. & Hengge,R. ( 2005; ). Genome-wide analysis of the general stressresponse network in Escherichia coli: sigmaS-dependent genes, promoters,and sigma factor selectivity. J Bacteriol 187, 1591–1603.[CrossRef]
    [Google Scholar]
  67. Weiner, L., Brissette, J. L. & Model, P. ( 1991; ). Stress-induced expression of the Escherichia coliphage shock protein operon is dependent on sigma54 and modulatedby positive and negative feedback mechanisms. Genes Dev 5, 1912–1923.[CrossRef]
    [Google Scholar]
  68. Yang, X. F., Lybecker, M. C., Pal, U., Alani, S. M., Blevins,J., Revel, A. T., Samuels, D. S. & Norgard, M. V. ( 2005; ). Analysis of the ospC regulatory element controlled by the RpoN-RpoSregulatory pathway in Borrelia burgdorferi. J Bacteriol 187, 4822–4829.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.032631-0
Loading
/content/journal/micro/10.1099/mic.0.032631-0
Loading

Data & Media loading...

Supplements

Oligonucleotide primers and probes used in this study [ PDF] (13 kb) Differentially expressed genes in EcJR-8 [ PDF] (67 kb) Optical density (OD ) during growth of Sakai (circles) and Sakai :: (triangles) in DMEM-MOPS. Error bars represent SEM ( =3) [ PDF] (723 kb)

PDF

Oligonucleotide primers and probes used in this study [ PDF] (13 kb) Differentially expressed genes in EcJR-8 [ PDF] (67 kb) Optical density (OD ) during growth of Sakai (circles) and Sakai :: (triangles) in DMEM-MOPS. Error bars represent SEM ( =3) [ PDF] (723 kb)

PDF

Oligonucleotide primers and probes used in this study [ PDF] (13 kb) Differentially expressed genes in EcJR-8 [ PDF] (67 kb) Optical density (OD ) during growth of Sakai (circles) and Sakai :: (triangles) in DMEM-MOPS. Error bars represent SEM ( =3) [ PDF] (723 kb)

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error