1887

Abstract

Members of the complex (Bcc) are respiratory pathogens in patients with cystic fibrosis (CF). Close repetitive DNA sequences often associate with surface antigens to promote genetic variability in pathogenic bacteria. The genome of J2315, a CF isolate belonging to the epidemic lineage Edinburgh–Toronto (ET-12), was analysed for the presence of close repetitive DNA sequences. Among the 422 DNA close repeats, 45 genes potentially involved in virulence were identified and grouped into 12 classes; of these, 13 genes were included in the antigens class. Two trimeric autotransporter adhesins (TAA) among the 13 putative antigens are absent from the other genomes and are clustered downstream of the island that is a marker for transmissible strains. This cluster contains four adhesins, one outer-membrane protein, one sensor histidine kinase and two transcriptional regulators. By using PCR, we analysed three genes among 47 Bcc isolates to determine whether the cluster was conserved. These three genes were present in the isolates of the ET-12 lineage but absent in all the other members. Furthermore, the gene was exclusively detected in this epidemic lineage and may serve as a valuable new addition to the field of Bcc diagnostics. The gene encodes a putative TAA that demonstrates adhesive properties to the extracellular matrix protein collagen type I. Quantitative real-time PCR analysis indicated that gene expression occurred preferentially for cells grown under high osmolarity, oxygen-limited conditions and oxidative stress. Inactivation of in attenuates the ability of the mutant to promote cell adherence and impairs the overall bacterial virulence against as a model of infection. Together, our data show that BCAM0224 from J2315 represents a new collagen-binding TAA with no bacterial orthologues which has an important role in cellular adhesion and virulence.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.032623-0
2010-04-01
2020-08-05
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/4/1084.html?itemId=/content/journal/micro/10.1099/mic.0.032623-0&mimeType=html&fmt=ahah

References

  1. Achaz G., Rocha E. P., Netter P., Coissac E.. 2002; Origin and fate of repeats in bacteria. Nucleic Acids Res30:2987–2994
    [Google Scholar]
  2. Achaz G., Boyer F., Rocha E. P., Viari A., Coissac E.. 2007; Repseek, a tool to retrieve approximate repeats from large DNA sequences. Bioinformatics23:119–121
    [Google Scholar]
  3. Anderson D. S., Adhikari P., Nowalk A. J., Chen C. Y., Mietzner T. A.. 2004; The hFbpABC transporter from Haemophilus influenzae functions as a binding-protein-dependent ABC transporter with high specificity and affinity for ferric iron. J Bacteriol186:6220–6229
    [Google Scholar]
  4. Baldwin A., Sokol P. A., Parkhill J., Mahenthiralingam E.. 2004; The Burkholderia cepacia epidemic strain marker is part of a novel genomic island encoding both virulence and metabolism-associated genes in Burkholderia cenocepacia. Infect Immun72:1537–1547
    [Google Scholar]
  5. Benson G.. 1999; Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res27:573–580
    [Google Scholar]
  6. Bernier S. P., Sokol P. A.. 2005; Use of suppression-subtractive hybridization to identify genes in the Burkholderia cepacia complex that are unique to Burkholderia cenocepacia. J Bacteriol187:5278–5291
    [Google Scholar]
  7. Bhatt S., Weingart C. L.. 2008; Identification of sodium chloride-regulated genes in Burkholderia cenocepacia. Curr Microbiol56:418–422
    [Google Scholar]
  8. Bichara M., Wagner J., Lambert I. B.. 2006; Mechanisms of tandem repeat instability in bacteria. Mutat Res598:144–163
    [Google Scholar]
  9. Cloud K. A., Dillard J. P.. 2002; A lytic transglycosylase of Neisseria gonorrhoeae is involved in peptidoglycan-derived cytotoxin production. Infect Immun70:2752–2757
    [Google Scholar]
  10. Coenye T., Spilker T., Van Schoor A., LiPuma J. J., Vandamme P.. 2004; Recovery of Burkholderia cenocepacia strain PHDC from cystic fibrosis patients in Europe. Thorax59:952–954
    [Google Scholar]
  11. Cohan F. M.. 1994; Genetic exchange and evolutionary divergence in prokaryotes. Trends Ecol Evol9:175–180
    [Google Scholar]
  12. Comanducci M., Bambini S., Brunelli B., Adu-Bobie J., Aricò B., Capecchi B., Giuliani M. M., Masignani V., Santini L.. other authors 2002; NadA, a novel vaccine candidate of Neisseria meningitidis. J Exp Med195:1445–1454
    [Google Scholar]
  13. Dautin N., Bernstein H. D.. 2007; Protein secretion in Gram-negative bacteria via the autotransporter pathway. Annu Rev Microbiol61:89–112
    [Google Scholar]
  14. Heise T., Dersch P.. 2006; Identification of a domain in Yersinia virulence factor YadA that is crucial for extracellular matrix-specific cell adhesion and uptake. Proc Natl Acad Sci U S A103:3375–3380
    [Google Scholar]
  15. Henderson I. R., Navarro-Garcia F., Desvaux M., Fernandez R. C., Ala'Aldeen D.. 2004; Type V protein secretion pathway: the autotransporter story. Microbiol Mol Biol Rev68:692–744
    [Google Scholar]
  16. Henikoff S., Henikoff J. G.. 1992; Amino acid substitution matrices from protein blocks. Proc Natl Acad Sci U S A89:10915–10919
    [Google Scholar]
  17. Hoiczyk E., Roggenkamp A., Reichenbecher M., Lupas A., Heesemann J.. 2000; Structure and sequence analysis of Yersinia YadA and Moraxella UspAs reveal a novel class of adhesins. EMBO J19:5989–5999
    [Google Scholar]
  18. Holden M. T. G., Seth-Smith H. M. B., Crossman L. C., Mohammed S., Stephen D. B., Cerdeño-Tárraga A. M., Thomson N. R., Bason N., Quail M. A.. other authors 2009; The genome of Burkholderia cenocepacia J2315, an epidemic pathogen of cystic fibrosis patients. J Bacteriol191:261–277
    [Google Scholar]
  19. Hughes J. E., Stewart J., Barclay G. R., Govan J. R.. 1997; Priming of neutrophil respiratory burst activity by lipopolysaccharide from Burkholderia cepacia. Infect Immun65:4281–4287
    [Google Scholar]
  20. Koretke K. K., Szczesny P., Gruber M., Lupas A. N.. 2006; Model structure of the prototypical non-fimbrial adhesin YadA of Yersinia enterocolitica. J Struct Biol155:154–161
    [Google Scholar]
  21. Lafontaine E. R., Cope L. D., Aebi C., Latimer J. L., McCracken G. H. Jr, Hansen E. J.. 2000; The UspA1 protein and a second type of UspA2 protein mediate adherence of Moraxella catarrhalis to human epithelial cells in vitro. J Bacteriol182:1364–1373
    [Google Scholar]
  22. Linke D., Riess T., Autenrieth I. B., Lupas A., Kempf V. A.. 2006; Trimeric autotransporter adhesins: variable structure, common function. Trends Microbiol14:264–270
    [Google Scholar]
  23. Livak K. J., Schmittgen T. D.. 2001; Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods25:402–408
    [Google Scholar]
  24. Mahenthiralingam E., Simpson D. A., Speert D. P.. 1997; Identification and characterization of a novel DNA marker associated with epidemic Burkholderia cepacia strains recovered from patients with cystic fibrosis. J Clin Microbiol35:808–816
    [Google Scholar]
  25. Mahenthiralingam E., Coenye T., Chung J. W., Speert D. P., Govan J. R., Taylor P., Vandamme P.. 2000; Diagnostically and experimentally useful panel of strains from the Burkholderia cepacia complex. J Clin Microbiol38:910–913
    [Google Scholar]
  26. Mahenthiralingam E., Urban T. A., Goldberg J. B.. 2005; The multifarious, multireplicon Burkholderia cepacia complex. Nat Rev Microbiol3:144–156
    [Google Scholar]
  27. Moreira L. M., Videira P. A., Sousa S. A., Leitão J. H., Cunha M. V., Sá-Correia I.. 2003; Identification and physical organization of the gene cluster involved in the biosynthesis of Burkholderia cepacia complex exopolysaccharide. Biochem Biophys Res Commun312:323–333
    [Google Scholar]
  28. Riess T., Andersson S. G., Lupas A., Schaller M., Schäfer A., Kyme P., Martin J., Wälzlein J. H., Ehehalt U.. other authors 2004; Bartonella adhesin A mediates a proangiogenic host cell response. J Exp Med200:1267–1278
    [Google Scholar]
  29. Rocha E. P., Blanchard A.. 2002; Genomic repeats, genome plasticity and the dynamics of Mycoplasma evolution. Nucleic Acids Res30:2031–2042
    [Google Scholar]
  30. Rocha E. P., Danchin A., Viari A.. 1999; Functional and evolutionary roles of long repeats in prokaryotes. Res Microbiol150:725–733
    [Google Scholar]
  31. Rutherford K., Parkhill J., Crook J., Horsnell T., Rice P., Rajandream M.-A., Barrell B.. 2000; Artemis: sequence visualisation and annotation. Bioinformatics16:944–945
    [Google Scholar]
  32. Sajjan U. S., Xie H., Lefebre M. D., Valvano M. A., Forstner J. F.. 2003; Identification and molecular analysis of cable pilus biosynthesis genes in Burkholderia cepacia. Microbiology149:961–971
    [Google Scholar]
  33. Saunders N. J., Jeffries A. C., Peden J. F., Hood D. W., Tettelin H., Rappuoli R., Moxon E. R.. 2000; Repeat-associated phase variable genes in the complete genome sequence of Neisseria meningitidis strain MC58. Mol Microbiol37:207–215
    [Google Scholar]
  34. Segonds C., Heulin T., Marty N., Chabanon G.. 1999; Differentiation of Burkholderia species by PCR-restriction fragment length polymorphism analysis of the 16S rRNA gene and application to cystic fibrosis isolates. J Clin Microbiol37:2201–2208
    [Google Scholar]
  35. Sokol P. A., Sajjan U., Visser M. B., Gingues S., Forstner J., Kooi C.. 2003; The CepIR quorum-sensing system contributes to the virulence of Burkholderia cenocepacia respiratory infections. Microbiology149:3649–3658
    [Google Scholar]
  36. Szczesny P., Lupas A.. 2008; Domain annotation of trimeric autotransporter adhesins – daTAA. Bioinformatics24:1251–1256
    [Google Scholar]
  37. Takahashi Y., Yajima A., Cisar J. O., Konishi K.. 2004; Functional analysis of the Streptococcus gordonii DL1 sialic acid-binding adhesin and its essential role in bacterial binding to platelets. Infect Immun72:3876–3882
    [Google Scholar]
  38. Tamm A., Tarkkanen A. M., Korhonen T. K., Kuusela P., Toivanen P., Skurnik M.. 1993; Hydrophobic domains affect the collagen-binding specificity and surface polymerization as well as the virulence potential of the YadA protein of Yersinia enterocolitica. Mol Microbiol10:995–1011
    [Google Scholar]
  39. Tan M. W., Mahajan-Miklos S., Ausubel F. M.. 1999; Killing of Caenorhabditis elegans by Pseudomonas aeruginosa used to model mammalian bacterial pathogenesis. Proc Natl Acad Sci U S A96:715–720
    [Google Scholar]
  40. Tomich M., Mohr C. D.. 2004; Transcriptional and posttranscriptional control of cable pilus gene expression in Burkholderia cenocepacia. J Bacteriol186:1009–1020
    [Google Scholar]
  41. Tomich M., Griffith A., Herfst C. A., Burns J. L., Mohr C. D.. 2003; Attenuated virulence of a Burkholderia cepacia type III secretion mutant in a murine model of infection. Infect Immun71:1405–1415
    [Google Scholar]
  42. Turton J. F., O'Brien E., Megson B., Kaufmann M. E., Pitt T. L.. 2009; Strains of Burkholderia cenocepacia genomovar IIIA possessing the cblA gene that are distinct from ET12. Diagn Microbiol Infect Dis64:94–97
    [Google Scholar]
  43. Valle J., Mabbett A. N., Ulett G. C., Toledo-Arana A., Wecker K., Totsika M., Schembri M. A., Ghigo J. M., Beloin C.. 2008; UpaG, a new member of the trimeric autotransporter family of adhesins in uropathogenic Escherichia coli. J Bacteriol190:4147–4161
    [Google Scholar]
  44. Vandamme P., Holmes B., Coenye T., Goris J., Mahenthiralingam E., LiPuma J. J., Govan J. R.. 2003; Burkholderia cenocepacia sp. nov. – a new twist to an old story. Res Microbiol154:91–96
    [Google Scholar]
  45. Vanlaere E., Baldwin A., Gevers D., Henry D., De Brandt E., LiPuma J. J., Mahenthiralingam E., Speert D. P., Dowson C., Vandamme P.. 2009; Taxon K, a complex within the Burkholderia cepacia complex comprises at least two novel species: Burkholderia contaminans sp.nov. and Burkholderia lata sp. nov. Int J Syst Evol Microbiol59:102–111
    [Google Scholar]
  46. Vinion-Dubiel A. D., Goldberg J. B.. 2003; Lipopolysaccharide of Burkholderia cepacia complex. J Endotoxin Res9:201–213
    [Google Scholar]
  47. Visser M. B., Majumdar S., Hani E., Sokol P. A.. 2004; Importance of the ornibactin and pyochelin siderophore transport systems in Burkholderia cenocepacia lung infections. Infect Immun72:2850–2857
    [Google Scholar]
  48. Wigfield S. M., Rigg G. P., Kavari M., Webb A. K., Matthews R. C., Burnie J. P.. 2002; Identification of an immunodominant drug efflux pump in Burkholderia cepacia. J Antimicrob Chemother49:619–624
    [Google Scholar]
  49. Zhang P., Chomel B. B., Schau M. K., Goo J. S., Droz S., Kelminson K. L., George S. S., Lerche N. W., Koehler J. E.. 2004; A family of variably expressed outer-membrane proteins (Vomp) mediates adhesion and autoaggregation in Bartonella quintana. Proc Natl Acad Sci U S A101:13630–13635
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.032623-0
Loading
/content/journal/micro/10.1099/mic.0.032623-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error