1887

Abstract

The presence and deteriorating action of micro-organisms on monuments and stone works of art have received considerable attention in the last few years. Knowledge of the microbial populations living on stone materials is the starting point for successful conservation treatment and control. This paper reviews the literature on cyanobacteria and chlorophyta that cause deterioration of stone cultural heritage (outdoor monuments and stone works of art) in European countries of the Mediterranean Basin. Some 45 case studies from 32 scientific papers published between 1976 and 2009 were analysed. Six lithotypes were considered: marble, limestone, travertine, dolomite, sandstone and granite. A wide range of stone monuments in the Mediterranean Basin support considerable colonization of cyanobacteria and chlorophyta, showing notable biodiversity. About 172 taxa have been described by different authors, including 37 genera of cyanobacteria and 48 genera of chlorophyta. The most widespread and commonly reported taxa on the stone cultural heritage in the Mediterranean Basin are, among cyanobacteria, , and and, among chlorophyta, and . The results suggest that cyanobacteria and chlorophyta colonize a wide variety of substrata and that this is related primarily to the physical characteristics of the stone surface, microclimate and environmental conditions and secondarily to the lithotype.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.032508-0
2009-11-01
2019-10-17
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/11/3476.html?itemId=/content/journal/micro/10.1099/mic.0.032508-0&mimeType=html&fmt=ahah

References

  1. Altieri, A., Pietrini, A. M., Ricci, S. & Roccardi, A. ( 2000; ). The temples of the archaeological area of Paestum (Italy): a case study on biodeterioration. In Proceedings of the 9th International Congress on Deterioration and Conservation of Stone, pp. 433–443. Edited by V. Fassina. Amsterdam: Elsevier.
  2. Alvarez, A., Argemí, M., Laorden, V., Doménech, X., Verbal, J., Navarro, A., Prada, J. L., Pugés, M., Rocabayera, R. & Vilaseca, L. ( 1994; ). Physical, chemical and biological weathering detected in the romanic portal of the Sant Quirze de Pedret church (XIIc.). In Proceedings of the 3rd International Symposium on the Conservation of Monuments in the Mediterranean Basin, pp. 365–369. Edited by V. Fassina, H. Ott & F. Zezza. Venice: Soprintendenza ai Beni Artistici e Storici di Venezia.
  3. Anagnostidis, K. & Komarek, J. ( 1988; ). Modern approach to the classification system of cyanophytes. 3. Oscillatoriales. Algol Stud 50–53, 327–472.
    [Google Scholar]
  4. Anagnostidis, K., Economou-Amilli, A. & Roussomoustakaki, M. ( 1983; ). Epilithic and chasmolithic microflora (Cyanophyta, Bacillariophyta) from marbles of the Parthenon (Acropolis-Athens, Greece). Nova Hedwigia 38, 227–287.
    [Google Scholar]
  5. Anagnostidis, K., Gehrmann, C. K., Gross, M., Krumbein, W. E., Lisi, S., Pantazidou, A., Urzi, C. & Zagari, M. ( 1991; ). Biodeterioration of marbles of the Parthenon and Propylaea, Acropolis, Athens – associated organisms, decay and treatment suggestions. In Proceedings of the 2nd International Symposium on the Conservation of Monuments in the Mediterranean Basin, pp. 305–325. Edited by D. Decrouez, J. Chamay & F. Zezza. Geneva, Switzerland: Ville de Genève-Muséum d'Histoire Naturelle & Musée D'Art et d'Histoire.
  6. Ariño, X. ( 1996; ). Estudio de la colonización, distribución e interacción de líquenes, algas y cianobacterias con materiales pétreos de los conjuntos arqueológicos de Baelo Claudia y Carmona. Doctoral thesis, University of Barcelona.
  7. Ariño, X., Hernandez-Marine, M. & Saiz-Jimenez, C. ( 1997; ). Colonization of Roman tombs by calcifying cyanobacteria. Phycologia 36, 366–373.[CrossRef]
    [Google Scholar]
  8. Ascaso, C., Garciá del Cura, M. A. & De Los Ríos, A. ( 2004; ). Microbial biofilms on carbonate rocks from a quarry and monuments in Novelda (Alicante, Spain). In Biodeterioration of Stone Surfaces. Lichen and Biofilms as Weathering Agents of Rocks and Cultural Heritage, 1st edn, pp. 79–98. Edited by L. L. St Clair & M. R. D. Seaward. Dordrecht, Netherlands: Kluwer.
  9. Bartolini, M., Ricci, S. & Del Signore, G. ( 2004; ). Release of photosynthetic pigments from epilithic biocenoses after biocide treatments. In Proceedings of the 10th International Congress on Deterioration and Conservation of Stone, pp. 519–526. Edited by D. Kwiatkowski & R. Löfvendahl. Stockholm, Sweden: ICOMOS.
  10. Bell, R. A. ( 1993; ). Cryptoendolithic algae of hot semiarid lands and deserts. J Phycol 29, 133–139.[CrossRef]
    [Google Scholar]
  11. Bellinzoni, A. M., Caneva, G. & Ricci, S. ( 2003; ). Ecological trends in travertine colonization by pioneer algae and plant communities. Int Biodeterior Biodegradation 51, 203–210.[CrossRef]
    [Google Scholar]
  12. Bolívar, F. C. & Sánchez-Castillo, P. M. ( 1997; ). Biomineralization processes in the fountains of the Alambra, Ganada, Spain. Int Biodeterior Biodegradation 40, 205–215.[CrossRef]
    [Google Scholar]
  13. Caneva, G., Nugari, M. P., Ricci, S. & Salvadori, O. ( 1992; ). Pitting of marble Roman monuments and the related microflora. In Proceedings of the 7th International Congress on Deterioration and Conservation of Stone, pp. 521–530. Edited by J. Delgado, F. Henriques & F. Telmo. Lisbon: Laboratório Nacional de Engenharia Civil.
  14. Cecchi, G., Pantani, L., Raimondi, V., Tomaselli, L., Lamenti, G., Tiano, P. & Chiari, R. ( 2000; ). Fluorescence lidar technique for remote sensing of stone monuments. J Cult Herit 1, 29–36.[CrossRef]
    [Google Scholar]
  15. Costerton, J. W., Lewandowski, Z., Caldwell, D. E., Korber, D. R. & Lappin-Scott, H. M. ( 1995; ). Microbial biofilms. Annu Rev Microbiol 49, 711–745.[CrossRef]
    [Google Scholar]
  16. Crispim, C. A. & Gaylarde, C. C. ( 2005; ). Cyanobacteria and biodeterioration of cultural heritage: a review. Microb Ecol 49, 1–9.[CrossRef]
    [Google Scholar]
  17. Crispim, C. A., Gaylarde, P. M. & Gaylarde, C. C. ( 2003; ). Algal and cyanobacterial biofilms on calcareous historic buildings. Curr Microbiol 46, 79–82.[CrossRef]
    [Google Scholar]
  18. Danin, A. & Caneva, G. ( 1990; ). Deterioration of limestone walls in Jerusalem and marble monuments in Rome caused by cyanobacteria and cyanophilous lichens. Int Biodeterior 26, 397–417.[CrossRef]
    [Google Scholar]
  19. De los Ríos, A. & Ascaso, C. ( 2005; ). Contributions of in situ microscopy to the current understanding of stone biodeterioration. Int Microbiol 8, 181–188.
    [Google Scholar]
  20. De los Ríos, A., Galván, V. & Ascaso, C. ( 2004; ). In situ microscopical diagnosis of biodeterioration processes at the convent of Santa Cruz la Real, Segovia, Spain. Int Biodeterior Biodegradation 54, 113–120.[CrossRef]
    [Google Scholar]
  21. Donlan, R. M. ( 2002; ). Biofilms: microbial life on surfaces. Emerg Infect Dis 8, 881–890.[CrossRef]
    [Google Scholar]
  22. Dupuy, P., Trotet, G. & Grossin, F. ( 1976; ). Protection des monuments contre les cyanphycées en milieu abrité et humide. In The Conservation of Stone I. Proceedings of the International Symposium on the Conservation of Stone, pp. 205–219. Edited by R. Rossi-Manaresi. Bologna, Italy: Centro per la conservazione delle sculture all'aperto.
  23. Fernandes, P. ( 2006; ). Applied microbiology and biotechnology in the conservation of stone cultural heritage materials. Appl Microbiol Biotechnol 73, 291–296.[CrossRef]
    [Google Scholar]
  24. Flores, M., Lorenzo, J. & Gómez-Alarcón, G. ( 1997; ). Algae and bacteria on historic monuments at Alcala de Henares, Spain. Int Biodeterior Biodegradation 40, 241–246.[CrossRef]
    [Google Scholar]
  25. Friedmann, E. I. ( 1982; ). Endolithic microorganisms in the Antarctic cold desert. Science 215, 1045–1053.[CrossRef]
    [Google Scholar]
  26. Giaccone, G., Einaldi, M. L. V. & Giacobini, C. ( 1976; ). Forme biologische delle alghe esistenti sulle sculture all'aperto. In The Conservation of Stone I. Proceedings of the International Symposium on the Conservation of Stone, pp. 245–256. Edited by R. Rossi-Manaresi. Bologna, Italy: Centro per la conservazione delle sculture all'aperto.
  27. Gómez-Alarcón, G., Muñoz, M., Ariño, X. & Ortega-Calvo, J. J. ( 1995; ). Microbial communities in weathered sandstones: the case of Carrascosa del Campo church, Spain. Sci Total Environ 167, 249–254.[CrossRef]
    [Google Scholar]
  28. Gorbushina, A. A. ( 2007; ). Life on the rocks. Environ Microbiol 9, 1613–1631.[CrossRef]
    [Google Scholar]
  29. Graham, L. E. & Wilcox, L. W. ( 2000; ). Algae, 1st edn. Upper Saddle River, NJ: Prentice-Hall.
  30. Griffin, P. S., Indictor, N. & Kloestler, R. J. ( 1991; ). The biodeterioration of stone: a review of deterioration mechanisms, conservation case histories, and treatment. Int Biodeterior 28, 187–207.[CrossRef]
    [Google Scholar]
  31. Hernandez-Marine, M., Saiz-Jimenez, C. & Ariño, X. ( 1997; ). Borzia periklei Anag. (Cyanoprokaryota): a taxonomical approach. Lagascalia 21, 457–462.
    [Google Scholar]
  32. Kawaguchi, T. & Decho, A. W. ( 2002; ). In situ analysis of carboxyl (-COOH) and sulfhydral (-SH) groups of extracellular polymeric secretions (EPS) by confocal scanning laser microscopy. Anal Biochem 304, 266–267.[CrossRef]
    [Google Scholar]
  33. Kemmling, A., Kämper, M., Flies, C. O., Schieweck, C. & Hoppert, M. ( 2004; ). Biofilms and extracellular matrices on geomaterials. Environ Geol 46, 429–435.
    [Google Scholar]
  34. Koestler, R. J. ( 2000; ). Polymers and resins as food for microbes. In Of Microbes and Art. The Role of Microbial Communities in the Degradation and Protection of Cultural Heritage, pp. 153–167. Edited by O. Ciferri, P. Tiano & G. Mastromei. New York: Kluwer.
  35. Krumbein, W. E. & Urzì, C. ( 1991; ). Biologically induced decay phenomena of antique marbles – some general considerations. In Proceedings of the 2nd International Symposium on the Conservation of Monuments in the Mediterranean Basin, 19–21 November, pp. 219–235. Edited by D. Decrouez, J. Chamay & F. Zezza. Geneva, Switzerland: Ville de Genève-Muséum d'Histoire Naturelle & Musée d'Art et d'Histoire.
  36. Lamenti, G., Tiano, P. & Tomaselli, L. ( 2000; ). Biodeterioration of ornamental marble statues in the Boboli Gardens (Florence, Italy). J Appl Phycol 12, 427–433.[CrossRef]
    [Google Scholar]
  37. Leite Magalhães, S. & Sequeira Braga, M. A. ( 2000; ). Biological colonization features on a granite monument from Braga (NW, Portugal). In Proceedings of the 9th International Congress on Deterioration and Conservation of Stone, pp. 521–529. Edited by V. Fassina. Amsterdam: Elsevier.
  38. McNamara, C. J. & Mitchell, R. ( 2005; ). Microbial deterioration of historic stone. Front Ecol Environ 3, 445–451.[CrossRef]
    [Google Scholar]
  39. Miller, A. Z. & Macedo, M. F. ( 2006; ). Mapping and characterization of a green biofilm inside of Vilar de Frades Church (Portugal). In Heritage, Weathering and Conservation, pp. 329–335. Edited by R. Fort, M. Alvarez de Buergo, M. Gomez-Heras & C. Vazquez-Calvo. London: Taylor & Francis.
  40. Miller, A. Z., Dionisio, A. & Macedo, M. F. ( 2006; ). Primary bioreceptivity: a comparative study of different Portuguese lithotypes. Int Biodeterior Biodegradation 57, 136–142.[CrossRef]
    [Google Scholar]
  41. Miller, A. Z., Laiz, L., Gonzalez, J. M., Dionísio, A., Macedo, M. F. & Saiz-Jimenez, C. ( 2008; ). Reproducing stone monument photosynthetic-based colonization under laboratory conditions. Sci Total Environ 405, 278–285.[CrossRef]
    [Google Scholar]
  42. Miller, A. Z., Laiz, L., Dionísio, A., Macedo, M. F. & Saiz-Jimenez, C. ( 2009; ). Growth of phototrophic biofilms from limestone monuments under laboratory conditions. Int Biodeterior Biodegradation
    [Google Scholar]
  43. Morton, L. H. G., Greenway, D. L. A., Gaylarde, C. C. & Surman, S. B. ( 1998; ). Consideration of some implications of the resistance of biofilms to biocides. Int Biodeterior Biodegradation 41, 247–259.[CrossRef]
    [Google Scholar]
  44. Noguerol-Seoane, A. & Rifón-Lastra, A. ( 1996; ). Epilithic ficoflora on two monuments of historic-artistic interest from Galicia (N.W. Spain). In Degradation and Conservation of Granitic Rocks in Monuments. Environmental Protection and Conservation of the European Cultural Heritage, pp. 417–421, Research Report no. 5. Brussels: European Commission Directorate-General XII: Science, Research and Development.
  45. Ortega-Calvo, J. J., Hernandez-Marine, M. & Saiz-Jimenez, C. ( 1991; ). Biodeterioration of building materials by cyanobacteria and algae. Int Biodeter 28, 165–185.[CrossRef]
    [Google Scholar]
  46. Ortega-Calvo, J. J., Hernandez-Marine, M. & Saiz-Jimenez, C. ( 1992; ). Experimental strategies for investigating algal deterioration of stone. Proceedings of the 7th International Congress on Deterioration and Conservation of Stone, pp. 541–549. Edited by J. Delgado, F. Henriques & F. Telmo. Lisbon: Laboratório Nacional de Engenharia Civil.
  47. Ortega-Calvo, J. J., Sanchez-Castillo, P. M., Hernandez-Marine, M. & Saiz-Jimenez, C. ( 1993a; ). Isolation and characterization of epilithic chlorophyta and cyanobacteria from two Spanish cathedrals (Salamanca and Toledo). Nova Hedwigia 57, 239–253.
    [Google Scholar]
  48. Ortega-Calvo, J. J., Hernandez-Marine, M. & Saiz-Jimenez, C. ( 1993b; ). Cyanobacteria and algae on historic buildings and monuments In Recent Advances in Biodeterioration and Biodegradation, pp. 173–203. Edited by K. L. Garg, N. Garg & K. G. Mukerji. Calcutta: Naya Prokash.
  49. Ortega-Calvo, J. J., Ariño, X., Hernandez-Marine, M. & Saiz-Jimenez, C. ( 1995; ). Factors affecting the weathering and colonization of monuments by phototrophic microorganisms. Sci Total Environ 167, 329–341.[CrossRef]
    [Google Scholar]
  50. Pantazidou, A. & Theoulakis, P. ( 1997; ). Cyanophytes and associated flora at the neoclassical Palace of Sts George and Michael in Corfu (Greece). Aspects of cleaning procedures. In Proceedings of the 4th International Symposium on the Conservation of Monuments in the Mediterranean Basin, pp. 355–368. Edted by A. Moropoulou, F. Zezza, E. Kollias & I. Papachistodoulou. Rhodes: Technical Chamber of Greece.
  51. Pentecost, A. ( 1992; ). Growth and distribution of endolithic algae in some North Yorkshire streams (UK). Br Phycol J 27, 145–151.[CrossRef]
    [Google Scholar]
  52. Pereira de Oliveira, B. ( 2008; ). Caracterização de filmes negros em pedras graníticas. O caso de estudo da Igreja da Ordem de São Francisco do Porto. MSc thesis, Universidade Nova de Lisboa, Lisbon, Portugal.
  53. Pereira de Oliveira, B., Miller, A., Sequeira Braga, M. A. & Macedo, M. F., Dionísio, A. & Silveira, T. ( 2008; ). Characterization of dark films in granites. The case study of Igreja da Ordem de São Francisco in Oporto (Portugal). In Proceedings of the 14th Interational Biodeterioration and Biodegradation Symposium, p. 72. Edited by C. Urzì. Messina, Italy: International Biodeterioration and Biodegradation Society.
  54. Pietrini, A. M., Ricci, S., Bartolini, M. & Giuliani, M. R. ( 1985; ). A reddish colour alteration caused by algae on stoneworks. Preliminary studies. In Proceedings of the 5th International Congress on Deterioration and Conservation of Stone, pp. 653–662. Edited by G. Felix. Lausanne, Switzerland: Presses Polytechniques Romandes.
  55. Pohl, W. & Schneider, J. ( 2002; ). Impact of endolithic biofilms on carbonate rock surfaces. In Natural Stone, Weathering Phenomena, Conservation Strategies and Case Studies, pp. 177–194, Special Publications 205. Edited by S. Siegesmund, T. Weiss & A. Vollbrecht. London: Geological Society.
  56. Prieto, B. & Silva, B. ( 2005; ). Estimation of the potential bioreceptivity of granitic rocks from their intrinsic properties. Int Biodeterior Biodegradation 56, 206–215.[CrossRef]
    [Google Scholar]
  57. Ricci, S. & Pietrini, A. M. ( 1994; ). Caratterizzazione della microflora algale presente sulla Fontana dei Quattro Fiumi, Roma. In Proceedings of the 3rd International Symposium on the Conservation of Monuments in the Mediterranean Basin, pp. 353–357. Edited by V. Fassina, H. Ott & F. Zezza. Venice: Soprintendenza ai Beni Artistici e Storici di Venezia.
  58. Roldán, M., Clavero, E., Castel, S. & Hernández-Mariné, M. ( 2004; ). Biofilms fluorescence and image analysis in hypogean monuments research. Arch Hydrobiol Suppl Algol Stud 111, 127–143.
    [Google Scholar]
  59. Saiz-Jimenez, C. ( 1995; ). Deposition of anthropogenic compounds on monuments and their effect on airborne microorganisms. Aerobiologia 11, 161–175.[CrossRef]
    [Google Scholar]
  60. Saiz-Jimenez, C. ( 1999; ). Biogeochemistry of weathering processes in monuments. Geomicrobiol J 16, 27–37.[CrossRef]
    [Google Scholar]
  61. Saiz-Jimenez, C., Hermosin, B., Ortega-Calvo, J. J. & Gómez-Alarcón, G. ( 1991; ). Applications of analytical pyrolysis to the study of stony cultural properties. J Anal Appl Pyrol 20, 239–521.[CrossRef]
    [Google Scholar]
  62. Salvadori, O. ( 2000; ). Characterisation of endolithic communities of stone monuments and natural outcrops. In Of Microbes and Art – The Role of Microbial Communities in the Degradation and Protection of Cultural Heritage, pp. 89–101. Edited by O. Ciferri, P. Tiano & G. Mastromei. New York: Kluwer.
  63. Salvadori, O., Sorlini, C. & Zanardini, E. ( 1994; ). Microbiological and biochemical investigations on stone of the Ca’ d'Oro facade (Venice). In Proceedings of the 3rd International Symposium on the Conservation of Monuments in the Mediterranean Basin, pp. 343–347. Edited by V. Fassina, H. Ott & F. Zezza. Venice: Soprintendenza ai Beni Artistici e Storici di Venezia
  64. Santos, M. F. A. ( 2003; ). Optical Microscopy of the Microbial Samples Collected on the Cloisters of Church of Santa Cruz in Coimbra (Portugal). Coimbra: Universidade de Coimbra.
  65. Sarro, M. I., Garcia, A. M., Rivalta, V. M., Moreno, D. A. & Arroyo, I. ( 2006; ). Biodeterioration of the Lions Fountain at the Alhambra Palace, Granada (Spain). Build Environ 41, 1811–1820.[CrossRef]
    [Google Scholar]
  66. Schumann, R., Häubner, N., Klausch, S. & Karsten, U. ( 2005; ). Chlorophyll extraction methods for the quantification of green microalgae colonizing building facades. Int Biodeterior Biodegradation 55, 213–222.[CrossRef]
    [Google Scholar]
  67. Tiano, P. ( 1998; ). Biodeterioration of monumental rocks: decay mechanisms and control methods. Sci Tech Cult Herit 7, 19–38.
    [Google Scholar]
  68. Tiano, P., Accolla, P. & Tomaselli, L. ( 1995; ). Phototrophic biodeteriogens on lithoid surfaces: an ecological study. Microb Ecol 29, 299–309.[CrossRef]
    [Google Scholar]
  69. Tomaselli, L. ( 2003; ). Biodeterioration processes on inorganic substrata. Coalition 6, 5–9.
    [Google Scholar]
  70. Tomaselli, L., Lamenti, G., Bosco, M. & Tiano, P. ( 2000a; ). Biodiversity of photosynthetic micro-organisms dwelling on stone monuments. Int Biodeterior Biodegradation 46, 251–258.[CrossRef]
    [Google Scholar]
  71. Tomaselli, L., Tiano, P. & Lamenti, G. ( 2000b; ). Occurrence and fluctuation in photosynthetic biocoenoses dwelling on stone monuments. In Of Microbes and Art – The Role of Microbial Communities in the Degradation and Protection of Cultural Heritage, pp. 63–76. Edited by O. Ciferri, P. Tiano & G. Mastromei. New York: Kluwer.
  72. Urzì, C. & Realini, M. ( 1998; ). Colour changes of Noto's calcareous sandstone as related to its colonisation by microorganisms. Int Biodeterior Biodegradation 42, 45–54.[CrossRef]
    [Google Scholar]
  73. Wakefield, R. D. & Jones, M. S. ( 1998; ). An introduction to stone colonizing micro-organisms and biodeterioration of building stone. Q J Eng Geol 31, 301–313.[CrossRef]
    [Google Scholar]
  74. Walker, J. J., Spear, J. R. & Pace, N. R. ( 2005; ). Geobiology of a microbial endolithic community in the Yellowstone geothermal environment. Nature 434, 1011–1014.[CrossRef]
    [Google Scholar]
  75. Warscheid, T. & Braams, J. ( 2000; ). Biodeterioration of stone: a review. Int Biodeterior Biodegradation 46, 343–368.[CrossRef]
    [Google Scholar]
  76. Wierzchos, J., De los Rios, A., Sancho, L. G. & Ascaso, C. ( 2004; ). Viability of endolithic micro-organisms in rocks from the McMurdo Dry Valleys of Antarctica established by confocal and fluorescence microscopy. J Microsc 216, 57–61.[CrossRef]
    [Google Scholar]
  77. Young, M. E., Alakomi, H. L., Fortune, I., Gorbushina, A. A., Krumbein, W. E., Maxwell, I., McCullagh, C., Robertson, P., Saarela, M. & other authors ( 2008; ). Development of a biocidal treatment regime to inhibit biological growths on cultural heritage: BIODAM. Environ Geol 56, 631–641.[CrossRef]
    [Google Scholar]
  78. Zurita, Y. P., Cultrone, G., Castillo, P. S., Sebastián, E. & Bolívar, F. C. ( 2005; ). Microalgae associated with deteriorated stonework of the fountain of Bibatauín in Granada, Spain. Int Biodeterior Biodegradation 55, 55–61.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.032508-0
Loading
/content/journal/micro/10.1099/mic.0.032508-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error