1887

Abstract

Extracellular protein secretion is an essential feature in bacterial physiology. The ability to efficiently secrete diverse hydrolytic enzymes represents a key nutritional strategy for all bacteria, including micro-organisms living in extreme and hostile habitats, such as cold environments. However, little is known about protein secretion mechanisms in psychrophilic bacteria. In this study, the recombinant secretion of a cold-adapted -amylase in the Antarctic Gram-negative TAC125 was investigated. By a combination of several molecular techniques, the function of the gene was related to -amylase secretion in this psychrophilic bacterium. Deletion of the gene completely abolished amylase secretion without affecting the extracellular targeting of other substrates mediated by canonical secretion systems. The gene product, PssA, is a multidomain lipoprotein, predicted to be localized in the bacterial outer membrane, and displaying three TPR (tetratricopeptide repeat) domains and two LysM modules. Based on functional annotation of these domains, combined with the experimental results reported herein, we suggest a role for PssA as a molecular adaptor, in charge of recruiting other cellular components required for specific -amylase secretion. To the best of our knowledge, no proteins exhibiting the same domain organization have previously been linked to protein secretion.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.032342-0
2010-01-01
2019-11-21
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/1/211.html?itemId=/content/journal/micro/10.1099/mic.0.032342-0&mimeType=html&fmt=ahah

References

  1. Antoine, R. & Locht, C. ( 1992; ). Isolation and molecular characterization of a novel broad-host-range plasmid from Bordetella bronchiseptica with sequence similarities to plasmids from gram-positive organisms. Mol Microbiol 6, 1785–1799.[CrossRef]
    [Google Scholar]
  2. Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J. G., Smith, J. A. & Struhl, K. ( 1994; ). Current Protocols in Molecular Biology. New York: Wiley.
  3. Ball, G., Chapon-Hervé, V., Bleves, S., Michel, G. & Bally, M. ( 1999; ). Assembly of XcpR in the cytoplasmic membrane is required for extracellular protein secretion in Pseudomonas aeruginosa. J Bacteriol 181, 382–388.
    [Google Scholar]
  4. Bateman, A. & Bycroft, M. ( 2000; ). The structure of a LysM domain from E. coli membrane-bound lytic murein transglycosylase D (MltD). J Mol Biol 299, 1113–1119.[CrossRef]
    [Google Scholar]
  5. Birkeland, N. K. ( 1994; ). Cloning, molecular characterization and expression of the genes encoding the lytic functions of lactococcal bacteriophage phi LC3: a dual lysis system of modular design. Can J Microbiol 40, 658–665.[CrossRef]
    [Google Scholar]
  6. Blatch, G. L. & Lässle, M. ( 1999; ). The tetratricopeptide repeat: a structural motif mediating protein-protein interactions. Bioessays 21, 932–939.[CrossRef]
    [Google Scholar]
  7. Cao, T. B. & Saier, M. H., Jr ( 2003; ). The general protein secretory pathway: phylogenetic analyses leading to evolutionary conclusions. Biochim Biophys Acta 1609, 115–125.[CrossRef]
    [Google Scholar]
  8. Carbonnelle, E., Hélaine, S., Prouvensier, L., Nassif, X. & Pelicic, V. ( 2005; ). Type IV pilus biogenesis in Neisseria meningitidis: PilW is involved in a step occurring after pilus assembly, essential for fibre stability and function. Mol Microbiol 55, 54–64.
    [Google Scholar]
  9. Cusano, A. M., Parrilli, E., Duilio, A., Sannia, G., Marino, G. & Tutino, M. L. ( 2006a; ). Secretion of psychrophilic alpha-amylase deletion mutants in Pseudoalteromonas haloplanktis TAC125. FEMS Microbiol Lett 258, 67–71.[CrossRef]
    [Google Scholar]
  10. Cusano, A. M., Parrilli, E., Marino, G. & Tutino, M. L. ( 2006b; ). A novel genetic system for recombinant protein secretion in the Antarctic Pseudoalteromonas haloplanktis TAC125. Microb Cell Fact 5, 40 [CrossRef]
    [Google Scholar]
  11. D'Amico, S., Collins, T., Marx, J. C., Feller, G. & Gerday, C. ( 2006; ). Psychrophilic microorganisms: challenges for life. EMBO Rep 7, 385–389.[CrossRef]
    [Google Scholar]
  12. D'Andrea, L. D. & Regan, L. ( 2003; ). TPR proteins: the versatile helix. Trends Biochem Sci 28, 655–662.[CrossRef]
    [Google Scholar]
  13. Das, A. K., Cohen, P. W. & Barford, D. ( 1998; ). The structure of the tetratricopeptide repeats of protein phosphatase 5: implications for TPR-mediated protein-protein interactions. EMBO J 17, 1192–1199.[CrossRef]
    [Google Scholar]
  14. Desvaux, M., Hébraud, M., Talon, R. & Henderson, I. R. ( 2009; ). Secretion and subcellular localizations of bacterial proteins: a semantic awareness issue. Trends Microbiol 17, 139–145.[CrossRef]
    [Google Scholar]
  15. Feller, G., Lonhienne, C., Deroanne, C., Libioulle, J., Van Beeumen, J. & Gerday, C. ( 1992; ). Purification, characterization, and nucleotide sequence of the thermolabile alpha-amylase from the Antarctic psychrotroph Alteromonas haloplanctis A23. J Biol Chem 267, 5217–5221.
    [Google Scholar]
  16. Feller, G., D'Amico, S., Benotmane, A. M., Joly, F., Van Beeumen, J. & Gerday, C. ( 1998; ). Characterization of the C-terminal propeptide involved in bacterial wall spanning of alpha-amylase from the psychrophile Alteromonas haloplanctis. J Biol Chem 273, 12109–12115.[CrossRef]
    [Google Scholar]
  17. Filloux, A., Joyet, P., Murgier, M. & Lazdunski, A. ( 1985; ). Cloning and expression of a Bacillus licheniformis alpha-amylase gene in Pseudomonas aeruginosa. FEMS Microbiol Lett 30, 203–207.
    [Google Scholar]
  18. Hanahan, D. ( 1983; ). Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166, 557–580.[CrossRef]
    [Google Scholar]
  19. Henderson, I. R., Navarro-Garcia, F., Desvaux, M., Fernandez, R. C. & Ala'Aldeen, D. ( 2004; ). Type V protein secretion pathway: the autotransporter story. Microbiol Mol Biol Rev 68, 692–744.[CrossRef]
    [Google Scholar]
  20. Johnson, T. L., Abendroth, J., Hol, W. G. & Sandkvist, M. ( 2006; ). Type II secretion: from structure to function. FEMS Microbiol Lett 255, 175–186.[CrossRef]
    [Google Scholar]
  21. Juncker, A. S., Willenbrock, H., von Heijne, G., Nielsen, H., Brunak, S. & Krogh, A. ( 2003; ). Prediction of lipoprotein signal peptides in Gram-negative bacteria. Protein Sci 12, 1652–1662.[CrossRef]
    [Google Scholar]
  22. Médigue, C., Krin, E., Pascal, G., Barbe, V., Bernsel, A., Bertin, P. N., Cheung, F., Cruveiller, S., D'Amico, S. & other authors ( 2005; ). Coping with cold: the genome of the versatile marine Antarctica bacterium Pseudoalteromonas haloplanktis TAC125. Genome Res 15, 1325–1335.[CrossRef]
    [Google Scholar]
  23. Methé, B. A., Nelson, K. E., Deming, J. W., Momen, B., Melamud, E., Zhang, X., Moult, J., Madupu, R., Nelson, W. C. & other authors ( 2005; ). The psychrophilic lifestyle as revealed by the genome sequence of Colwellia psychrerythraea 34H through genomic and proteomic analyses. Proc Natl Acad Sci U S A 102, 10913–10918.[CrossRef]
    [Google Scholar]
  24. Norrander, J., Kempe, T. & Messing, J. ( 1983; ). Construction of improved M13 vectors using oligodeoxynucleotide-directed mutagenesis. Gene 26, 101–106.[CrossRef]
    [Google Scholar]
  25. Nudleman, E., Wall, D. & Kaiser, D. ( 2005; ). Cell-to-cell transfer of bacterial outer membrane lipoproteins. Science 309, 125–127.[CrossRef]
    [Google Scholar]
  26. O'Callaghan, C. H., Morris, A., Kirby, S. M. & Shingler, A. H. ( 1972; ). Novel method for detection of β-lactamase by using a chromogenic cephalosporin substrate. Antimicrob Agents Chemother 1, 283–288.[CrossRef]
    [Google Scholar]
  27. Parrilli, E., Cusano, A. M., Giuliani, M. & Tutino, M. L. ( 2006; ). Cell engineering of Pseudoalteromonas haloplanktis TAC125: construction of a mutant strain with reduced exo-proteolytic activity. Microb Cell Fact 5(Suppl 1), P36. doi:10.1186/1475-2859-5-S1-P36.
    [Google Scholar]
  28. Parrilli, E., Duilio, A. & Tutino, M. L. ( 2008a; ). Heterologous protein expression in psychrophilic hosts. In Psychrophiles: from Biodiversity to Biotechnology, pp. 365–379. Edited by R. Margesin, F. Schinner, J. C. Marx & C. Gerday. Berlin & Heidelberg: Springer.
  29. Parrilli, E., De Vizio, D., Cirulli, C. & Tutino, M. L. ( 2008b; ). Development of an improved Pseudoalteromonas haloplanktis TAC125 strain for recombinant protein secretion at low temperature. Microb Cell Fact 7, 2 [CrossRef]
    [Google Scholar]
  30. Parrilli, E., Giuliani, M. & Tutino, M. L. ( 2009; ). General secretory pathway from marine Antarctic Pseudoalteromonas haloplanktis TAC125. Marine Genomics 1, 123–128.
    [Google Scholar]
  31. Peabody, C. R., Chung, Y.-J., Yen, M.-R., Vidal-Ingigliardi, D., Pugsley, A. P. & Saier, M. H., Jr ( 2003; ). Type II protein secretion and its relationship to bacterial type IV pili and archaeal flagella. Microbiology 149, 3051–3072.[CrossRef]
    [Google Scholar]
  32. Sambrook, J. & Russell, D. W. ( 2001; ). Molecular Cloning: a Laboratory Manual, 3rd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  33. Tokuda, H. & Matsuyama, S. ( 2004; ). Sorting of lipoproteins to the outer membrane in E. coli. Biochim Biophys Acta 1694, IN1–9.[CrossRef]
    [Google Scholar]
  34. Tutino, M. L., Duilio, A., Parrilli, E., Remaut, E., Sannia, G. & Marino, G. ( 2001; ). A novel replication element from an Antarctic plasmid as a tool for the expression of proteins at low temperature. Extremophiles 5, 257–264.[CrossRef]
    [Google Scholar]
  35. Tutino, M. L., Parrilli, E., Giaquinto, L., Duilio, A., Sannia, G., Feller, G. & Marino, G. ( 2002; ). Secretion of α-amylase from Pseudoalteromonas haloplanktis TAB23: two different pathways in different hosts. J Bacteriol 184, 5814–5817.[CrossRef]
    [Google Scholar]
  36. Zdobnov, E. M. & Apweiler, R. ( 2001; ). InterProScan – an integration platform for the signature recognition methods in InterPro. Bioinformatics 17, 847–848.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.032342-0
Loading
/content/journal/micro/10.1099/mic.0.032342-0
Loading

Data & Media loading...

Supplements

vol. , part 1, pp. 211 - 219

[ PDF, 31 kb], including: Oligonucleotides used in this paper Genes identified in the genomic DNA insert contained in the 12-26 cosmid Representation of the TAC125 genomic DNA (chromosome b) region between positions 152464 and 189746 containing the CDS from PSHAb0127 and PSHAb0152, representation of the 12-26 cosmid subclones constructed in this work, and a representation of synteny analysis between TAC125 CDSs (from PSHAb0127 and PSHAb0152) and genes of six chosen genomes



PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error