1887

Abstract

The development of biofilm requires the differential expression of various genes implicated in cell signalling, stress responses, motility and the synthesis of structures responsible for cell attachment. The operon is among the stress-response genes most induced during growth of the biofilm. In this study we demonstrated, to our knowledge for the first time, that the lack of IbpAB proteins in cells inhibited the formation of biofilm at the air–liquid interface, although it allowed normal planktonic growth. We showed that mutant cells experienced endogenous oxidative stress, which might result from a decreased catalase activity. The endogenous oxidative stress in cells led to increased expression of tryptophanase, an enzyme which catalyses the synthesis of indole. We demonstrated that the formation of biofilm by the mutant was delayed due to the increase in the extracellular concentration of indole, which is known to play the role of a signal molecule, inhibiting biofilm growth.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.032334-0
2010-01-01
2020-08-03
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/1/148.html?itemId=/content/journal/micro/10.1099/mic.0.032334-0&mimeType=html&fmt=ahah

References

  1. Allen S. P., Polazzi J. O., Gierse J. K., Easton A. M.. 1992; Two novel heat shock genes encoding proteins produced in response to heterologous protein expression in Escherichia coli. J Bacteriol174:6938–6947
    [Google Scholar]
  2. Beloin C., Valle J., Latour-Lambert P., Faure P., Kzreminski M., Balestrino D., Haagensen J. A., Molin S., Prensier G.. other authors 2004; Global impact of mature biofilm lifestyle on Escherichia coli K-12 gene expression. Mol Microbiol51:659–674
    [Google Scholar]
  3. Blankenhorn D., Phillips J., Slonczewski J. L.. 1999; Acid- and base-induced proteins during aerobic and anaerobic growth of Escherichia coli revealed by two-dimensional gel electrophoresis. J Bacteriol181:2209–2216
    [Google Scholar]
  4. Choi S. S., Kang B. Y., Chung M. J., Kim S. D., Park S. H., Kim J. S., Kang C. Y., Ha N. J.. 2005; Safety assessment of potential lactic acid bacteria Bifidobacterium longum SPM1205 isolated from healthy Koreans. J Microbiol43:493–498
    [Google Scholar]
  5. Chuang S. E., Burland V., Plunkett G. III, Daniels D. L., Blattner F. R.. 1993; Sequence analysis of four new heat-shock genes constituting the hslTS/ ibpAB and hslVU operons in Escherichia coli. Gene134:1–6
    [Google Scholar]
  6. Churchward G., Belin D., Nagamine Y.. 1984; A pSC101-derived plasmid which shows no sequence homology to other commonly used cloning vectors. Gene31:165–171
    [Google Scholar]
  7. Collet A., Vilain S., Cosette P., Junter G. A., Jouenne T., Phillips R. S., Di Martino P.. 2007; Protein expression in Escherichia coli S17-1 biofilms: impact of indole. Antonie Van Leeuwenhoek91:71–85
    [Google Scholar]
  8. Colón-González M., Méndez-Ortiz M. M., Membrillo-Hernández J.. 2004; Anaerobic growth does not support biofilm formation in Escherichia coli K-12. Res Microbiol155:514–521
    [Google Scholar]
  9. Di Martino P., Fursy R., Bret L., Sundararaju B., Phillips R. S.. 2003; Indole can act as an extracellular signal to regulate biofilm formation of Escherichia coli and other indole-producing bacteria. Can J Microbiol49:443–449
    [Google Scholar]
  10. Domka J., Lee J., Wood T. K.. 2006; YliH (BssR) and YceP (BssS) regulate Escherichia coli K-12 biofilm formation by influencing cell signaling. Appl Environ Microbiol72:2449–2459
    [Google Scholar]
  11. Domka J., Lee J., Bansal T., Wood T. K.. 2007; Temporal gene-expression in Escherichia coli K-12 biofilms. Environ Microbiol9:332–346
    [Google Scholar]
  12. Dubern J. F., Lagendijk E. L., Lugtenberg B. J., Bloemberg G. V.. 2005; The heat shock genes dnaK, dnaJ, and grpE are involved in regulation of putisolvin biosynthesis in Pseudomonas putida PCL1445. J Bacteriol187:5967–5976
    [Google Scholar]
  13. Echave P., Tamarit J., Cabiscol E., Ros J.. 2003; Novel antioxidant role of alcohol dehydrogenase E from Escherichia coli. J Biol Chem278:30193–30198
    [Google Scholar]
  14. Fux C. A., Costerton J. W., Stewart P. S., Stoodley P.. 2005; Survival strategies of infectious biofilms. Trends Microbiol13:34–40
    [Google Scholar]
  15. Hall-Stoodley L., Costerton J. W., Stoodley P.. 2004; Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol2:95–108
    [Google Scholar]
  16. Harrison J. J., Ceri H., Turner R. J.. 2007; Multimetal resistance and tolerance in microbial biofilms. Nat Rev Microbiol5:928–938
    [Google Scholar]
  17. Haslbeck M., Franzmann T., Weinfurtner D., Buchner J.. 2005; Some like it hot: the structure and function of small heat-shock proteins. Nat Struct Mol Biol12:842–846
    [Google Scholar]
  18. Jakubowski W., Biliński T., Bartosz G.. 2000; Oxidative stress during aging of stationary cultures of the yeast Saccharomyces cerevisiae. Free Radic Biol Med28:659–664
    [Google Scholar]
  19. Junker L. M., Toba F. A., Hay A. G.. 2007; Transcription in Escherichia coli PHL628 biofilms. FEMS Microbiol Lett268:237–243
    [Google Scholar]
  20. Kershaw C. J., Brown N. L., Constantinidou C., Patel M. D., Hobman J. L.. 2005; The expression profile of Escherichia coli K-12 in response to minimal, optimal and excess copper concentrations. Microbiology151:1187–1198
    [Google Scholar]
  21. Kitagawa M., Miyakawa M., Matsumura Y., Tsuchido T.. 2000; Small heat shock proteins, IbpA and IbpB, are involved in resistances to heat and superoxide stress in Escherichia coli. FEMS Microbiol Lett184:165–171
    [Google Scholar]
  22. Kitagawa M., Miyakawa M., Matsumura Y., Tsuchido T.. 2002; Escherichia coli small heat shock proteins, IbpA and IbpB, protect enzymes from inactivation by heat and oxidants. Eur J Biochem269:2907–2917
    [Google Scholar]
  23. Kuczyńska-Wisńik D., Laskowska E., Taylor A.. 2001; Transcription of the ibpB heat-shock gene is under control of σ32- and σ54-promoters, a third regulon of heat-shock response. Biochem Biophys Res Commun284:57–64
    [Google Scholar]
  24. Kuczyńska-Wisńik D., Kędzierska S., Matuszewska E., Lund P., Taylor A., Lipińska B., Laskowska E.. 2002; The Escherichia coli small heat-shock proteins IbpA and IbpB prevent the aggregation of endogenous proteins denatured in vivo during extreme heat shock. Microbiology148:1757–1765
    [Google Scholar]
  25. Lacour S., Landini P.. 2004; σS-dependent gene expression at the onset of stationary phase in Escherichia coli: function of σS-dependent genes and identification of their promoter sequences. J Bacteriol186:7186–7195
    [Google Scholar]
  26. Laskowska E., Wawrzynów A., Taylor A.. 1996; IbpA and IbpB, the new heat shock proteins, bind to endogenous Escherichia coli proteins aggregated intracellularly by heat shock. Biochimie78:117–122
    [Google Scholar]
  27. Laskowska E., Kuczyńska-Wiśnik D., Bąk M., Lipińska B.. 2003; Trimethoprim induces heat shock proteins and protein aggregation in E. coli cells. Curr Microbiol47:286–289
    [Google Scholar]
  28. Lee J., Jayaraman A., Wood T. K.. 2007; Indole is an inter-species biofilm signal mediated by SdiA. BMC Microbiol7:42
    [Google Scholar]
  29. Lee J., Zhang X. S., Hegde M., Bentley W. E., Jayaraman A., Wood T. K.. 2008; Indole cell signaling occurs primarily at low temperatures in Escherichia coli. ISME J2:1007–1023
    [Google Scholar]
  30. Matuszewska M., Kuczyńska-Wiśnik D., Laskowska E., Liberek K.. 2005; The small heat shock protein IbpA from Escherichia coli cooperates with IbpB in stabilization of thermally aggregated proteins in a disaggregation competent state. J Biol Chem280:12292–12298
    [Google Scholar]
  31. Matuszewska E., Kwiatkowska J., Kuczyńska-Wiśnik D., Laskowska E.. 2008; Escherichia coli heat-shock proteins IbpA/B are involved in resistance to oxidative stress induced by copper. Microbiology154:1739–1747
    [Google Scholar]
  32. Mogk A., Deuerling E., Vorderwülbecke S., Vierling E., Bukau B.. 2003a; Small heat shock proteins, ClpB and the DnaK system form a functional triade in reversing protein aggregation. Mol Microbiol50:585–595
    [Google Scholar]
  33. Mogk A., Schlieker C., Friedrich K. L., Schönfeld H. J., Vierling E., Bukau B.. 2003b; Refolding of substrates bound to small Hsps relies on a disaggregation reaction mediated most efficiently by ClpB/DnaK. J Biol Chem278:31033–31042
    [Google Scholar]
  34. Nakamoto H., Vigh L.. 2007; The small heat shock proteins and their clients. Cell Mol Life Sci64:294–306
    [Google Scholar]
  35. Nobre L. S., Al-Shahrour F., Dopazo J., Saraiva L. M.. 2009; Exploring the antimicrobial action of a carbon monoxide-releasing compound through whole-genome transcription profiling of Escherichia coli. Microbiology155:813–824
    [Google Scholar]
  36. Peréz J. M., Calderón I. L., Arenas F. A., Fuentes D. E., Pradenas G. A., Fuentes E. L., Sandoval J. M., Castro M. E., Elías A. O., Vásquez C. C.. 2007; Bacterial toxicity of potassium tellurite: unveiling an ancient enigma. PLoS One2:e211
    [Google Scholar]
  37. Pomposiello P. J., Bennik M. H., Demple B.. 2001; Genome-wide transcriptional profiling of the Escherichia coli responses to superoxide stress and sodium salicylate. J Bacteriol183:3890–3902
    [Google Scholar]
  38. Prüß B. M., Besemann C., Denton A., Wolfe A. J.. 2006; A complex transcription network controls the early stages of biofilm development by Escherichia coli. J Bacteriol188:3731–3739
    [Google Scholar]
  39. Ratajczak E., Zietkiewicz S., Liberek K.. 2009; Distinct activities of Escherichia coli small heat shock proteins IbpA and IbpB promote efficient protein disaggregation. J Mol Biol386:178–189
    [Google Scholar]
  40. Ren D., Bedzyk L. A., Thomas S. M., Ye R. W., Wood T. K.. 2004; Gene expression in Escherichia coli biofilms. Appl Microbiol Biotechnol64:515–524
    [Google Scholar]
  41. Sambrook J., Fritsh E. F., Maniatis F.. 1989; Molecular Cloning: a Laboratory Manual, 2nd edn.Cold. Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  42. Schembri M. A., Kjaergaard K., Klemm P.. 2003; Global gene expression in Escherichia coli biofilms. Mol Microbiol48:253–267
    [Google Scholar]
  43. Shi W., Zhou Y., Wild J., Adler J., Gross C. A.. 1992; DnaK, DnaJ, and GrpE are required for flagellum synthesis in Escherichia coli. J Bacteriol174:6256–6263
    [Google Scholar]
  44. Shigapova N., Török Z., Balogh G., Goloubinoff P., Vígh L., Horváth I.. 2005; Membrane fluidization triggers membrane remodeling which affects the thermotolerance in Escherichia coli. Biochem Biophys Res Commun328:1216–1223
    [Google Scholar]
  45. Stewart P. S., Franklin M. J.. 2008; Physiological heterogeneity in biofilms. Nat Rev Microbiol6:199–210
    [Google Scholar]
  46. Suwalsky M., Ungerer B., Quevedo L., Aguilar F., Sotomayor C. P.. 1998; Cu2+ ions interact with cell membranes. J Inorg Biochem70:233–238
    [Google Scholar]
  47. Tamarit J., Cabiscol E., Ros J.. 1998; Identification of the major oxidatively damaged proteins in Escherichia coli cells exposed to oxidative stress. J Biol Chem273:3027–3032
    [Google Scholar]
  48. Van Houdt R., Michiels C. W.. 2005; Role of bacterial cell surface structures in Escherichia coli biofilm formation. Res Microbiol156:626–633
    [Google Scholar]
  49. Veinger L., Diamant S., Buchner J., Goloubinoff P.. 1998; The small heat-shock protein IbpB from Escherichia coli stabilizes stress denatured proteins for subsequent refolding by a multichaperone network. J Biol Chem273:11032–11037
    [Google Scholar]
  50. Visick J. E., Clarke S.. 1997; RpoS- and OxyR-independent induction of HPI catalase at stationary phase in Escherichia coli and identification of rpoS mutations in common laboratory strains. J Bacteriol179:4158–4163
    [Google Scholar]
  51. Wang D., Ding X., Rather P. N.. 2001; Indole can act as an extracellular signal in Escherichia coli. J Bacteriol183:4210–4216
    [Google Scholar]
  52. Wood T. K.. 2009; Insights on Escherichia coli biofilm formation and inhibition from whole-transcriptome profiling. Environ Microbiol11:1–15
    [Google Scholar]
  53. Zhang X. S., García-Contreras R., Wood T. K.. 2007; YcfR (BhsA) influences Escherichia coli biofilm formation through stress response and surface hydrophobicity. J Bacteriol189:3051–3062
    [Google Scholar]
  54. Zheng M., Wang X., Templeton L. J., Smulski D. R., La Rossa R. A., Storz G.. 2001; DNA microarray-mediated transcriptional profiling of the Escherichia coli response to hydrogen peroxide. J Bacteriol183:4562–4570
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.032334-0
Loading
/content/journal/micro/10.1099/mic.0.032334-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error