1887

Abstract

The type III secretion system (T3SS) encoded by pathogenicity island 1 (SPI-1) is important for the invasion of epithelial cells during development of -associated enterocolitis. It has been suggested that the level and timing of the expression of the SPI-1 T3SS proteins and effectors dictate the consequences of bacterial infection and pathogenesis. However, the expression of these proteins has not been extensively studied , especially during the later stages of salmonellosis when the infection is established. We have constructed recombinant strains that contain a FLAG epitope inserted in-frame to genes , , , , and , and investigated the expression of the tagged proteins both and during murine salmonellosis. Mice were inoculated intraperitoneally or intragastrically with the tagged strains. At different time points post-infection, bacteria were recovered from various organs, and the expression of the tagged proteins was determined. Our results provide direct evidence that PrgJ and SipD are expressed in colonizing the liver and ileum of infected animals at both the early and late stages of infection. Furthermore, our study has shown that the InvJ protein is expressed preferentially in colonizing the ileum but not the liver, while SipC is expressed preferentially in colonizing the liver but not the ileum. Thus, appears to express different SPI-1 proteins and effectors when colonizing specific tissues. Our results suggest that differential expression of these proteins may be important for tissue-specific aspects of bacterial pathogenesis such as gastroenterititis in the ileum and systemic infection in the liver.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.032318-0
2010-01-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/1/116.html?itemId=/content/journal/micro/10.1099/mic.0.032318-0&mimeType=html&fmt=ahah

References

  1. Abrahams G. L., Hensel M. 2006; Manipulating cellular transport and immune responses: dynamic interactions between intracellular Salmonella enterica and its host cells. Cell Microbiol 8:728–737
    [Google Scholar]
  2. Arricau N., Hermant D., Waxin H., Ecobichon C., Duffey P. S., Popoff M. Y. 1998; The RcsB-RcsC regulatory system of Salmonella typhi differentially modulates the expression of invasion proteins, flagellin and Vi antigen in response to osmolarity. Mol Microbiol 29:835–850
    [Google Scholar]
  3. Bajaj V., Lucas R. L., Hwang C., Lee C. A. 1996; Co-ordinate regulation of Salmonella typhimurium invasion genes by environmental and regulatory factors is mediated by control of hilA expression. Mol Microbiol 22:703–714
    [Google Scholar]
  4. Blanc-Potard A. B., Solomon F., Kayser J., Groisman E. A. 1999; The SPI-3 pathogenicity island of Salmonella enterica. J Bacteriol 181:998–1004
    [Google Scholar]
  5. Cain R. J., Hayward R. D., Koronakis V. 2008; Deciphering interplay between Salmonella invasion effectors. PLoS Pathog 4:e1000037
    [Google Scholar]
  6. Chang J., Chen J., Zhou D. 2005; Delineation and characterization of the actin nucleation and effector translocation activities of Salmonella SipC. Mol Microbiol 55:1379–1389
    [Google Scholar]
  7. Chang J., Myeni S. K., Lin T. L., Wu C. C., Staiger C. J., Zhou D. 2007; SipC multimerization promotes actin nucleation and contributes to Salmonella-induced inflammation. Mol Microbiol 66:1548–1556
    [Google Scholar]
  8. Chubet R. G., Brizzard B. L. 1996; Vectors for expression and secretion of FLAG epitope-tagged proteins in mammalian cells. Biotechniques 20:136–141
    [Google Scholar]
  9. Cummings J. H., Pomare E. W., Branch W. J., Naylor C. P., Macfarlane G. T. 1987; Short chain fatty acids in human large intestine, portal, hepatic and venous blood. Gut 28:1221–1227
    [Google Scholar]
  10. Datsenko K. A., Wanner B. L. 2000; One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 97:6640–6645
    [Google Scholar]
  11. Ellermeier J. R., Slauch J. M. 2007; Adaptation to the host environment: regulation of the SPI1 type III secretion system in Salmonella enterica serovar Typhimurium. Curr Opin Microbiol 10:24–29
    [Google Scholar]
  12. Galan J. E. 2001; Salmonella interactions with host cells: type III secretion at work. Annu Rev Cell Dev Biol 17:53–86
    [Google Scholar]
  13. Galan J. E., Curtiss R. III 1990; Expression of Salmonella typhimurium genes required for invasion is regulated by changes in DNA supercoiling. Infect Immun 58:1879–1885
    [Google Scholar]
  14. Galan J. E., Wolf-Watz H. 2006; Protein delivery into eukaryotic cells by type III secretion machines. Nature 444:567–573
    [Google Scholar]
  15. Gantois I., Ducatelle R., Pasmans F., Haesebrouck F., Hautefort I., Thompson A., Hinton J. C., Van Immerseel F. 2006; Butyrate specifically down-regulates salmonella pathogenicity island 1 gene expression. Appl Environ Microbiol 72:946–949
    [Google Scholar]
  16. Giacomodonato M. N., Uzzau S., Bacciu D., Caccuri R., Sarnacki S. H., Rubino S., Cerquetti M. C. 2007; SipA, SopA, SopB, SopD and SopE2 effector proteins of Salmonella enterica serovar Typhimurium are synthesized at late stages of infection in mice. Microbiology 153:1221–1228
    [Google Scholar]
  17. Gong H., Su J., Bai Y., Miao L., Kim K., Yang Y., Liu F., Lu S. 2009; Characterization of the expression of Salmonella Type III secretion system factor PrgI, SipA, SipB, SopE2, SpaO, and SptP in cultures and in mice. BMC Microbiol 9:73
    [Google Scholar]
  18. Hayward R. D., Koronakis V. 1999; Direct nucleation and bundling of actin by the SipC protein of invasive Salmonella. EMBO J 18:4926–4934
    [Google Scholar]
  19. Hensel M. 2004; Evolution of pathogenicity islands of Salmonella enterica. Int J Med Microbiol 294:95–102
    [Google Scholar]
  20. Huang X., Xu H., Sun X., Ohkusu K., Kawamura Y., Ezaki T. 2007; Genome-wide scan of the gene expression kinetics of Salmonella enterica serovar typhi during hyperosmotic stress. Int J Mol Sci 8:116–135
    [Google Scholar]
  21. Hueck C. J. 1998; Type III protein secretion systems in bacterial pathogens of animals and plants. Microbiol Mol Biol Rev 62:379–433
    [Google Scholar]
  22. Jones B. D., Falkow S. 1994; Identification and characterization of a Salmonella typhimurium oxygen-regulated gene required for bacterial internalization. Infect Immun 62:3745–3752
    [Google Scholar]
  23. Kiss T., Morgan E., Nagy G. 2007; Contribution of SPI-4 genes to the virulence of Salmonella enterica. FEMS Microbiol Lett 275:153–159
    [Google Scholar]
  24. Kubori T., Sukhan A., Aizawa S. I., Galan J. E. 2000; Molecular characterization and assembly of the needle complex of the Salmonella typhimurium type III protein secretion system. Proc Natl Acad Sci U S A 97:10225–10230
    [Google Scholar]
  25. Lara-Tejero M., Galan J. E. 2009; Salmonella enterica serovar Typhimurium pathogenicity island 1-encoded type III secretion system translocases mediate intimate attachment to nonphagocytic cells. Infect Immun 77:2635–2642
    [Google Scholar]
  26. Lee C. A., Falkow S. 1990; The ability of Salmonella to enter mammalian cells is affected by bacterial growth state. Proc Natl Acad Sci U S A 87:4304–4308
    [Google Scholar]
  27. Lober S., Jackel D., Kaiser N., Hensel M. 2006; Regulation of Salmonella pathogenicity island 2 genes by independent environmental signals. Int J Med Microbiol 296:435–447
    [Google Scholar]
  28. Lu S., Manges A. R., Xu Y., Fang F. C., Riley L. W. 1999; Analysis of virulence of clinical isolates of Salmonella enteritidis in vivo and in vitro. Infect Immun 67:5651–5657
    [Google Scholar]
  29. Lu S., Killoran P. B., Fang F. C., Riley L. W. 2002; The global regulator ArcA controls resistance to reactive nitrogen and oxygen intermediates in Salmonella enterica serovar Enteritidis. Infect Immun 70:451–461
    [Google Scholar]
  30. Lu S., Killoran P. B., Riley L. W. 2003; Association of Salmonella enterica serovar Enteritidis yafD with resistance to chicken egg albumen. Infect Immun 71:6734–6741
    [Google Scholar]
  31. Ly K. T., Casanova J. E. 2007; Mechanisms of Salmonella entry into host cells. Cell Microbiol 9:2103–2111
    [Google Scholar]
  32. Marlovits T. C., Kubori T., Lara-Tejero M., Thomas D., Unger V. M., Galan J. E. 2006; Assembly of the inner rod determines needle length in the type III secretion injectisome. Nature 441:637–640
    [Google Scholar]
  33. Mizusaki H., Takaya A., Yamamoto T., Aizawa S. 2008; Signal pathway in salt-activated expression of the Salmonella pathogenicity island 1 type III secretion system in Salmonella enterica serovar Typhimurium. J Bacteriol 190:4624–4631
    [Google Scholar]
  34. Olsen S. J., MacKinnon L. C., Goulding J. S., Bean N. H., Slutsker L. 2000; Surveillance for foodborne-disease outbreaks – United States, 1993–1997. MMWR CDC Surveill Summ 49:1–62
    [Google Scholar]
  35. Pfeifer C. G., Marcus S. L., Steele-Mortimer O., Knodler L. A., Finlay B. B. 1999; Salmonella typhimurium virulence genes are induced upon bacterial invasion into phagocytic and nonphagocytic cells. Infect Immun 67:5690–5698
    [Google Scholar]
  36. Scherer C. A., Cooper E., Miller S. I. 2000; The Salmonella type III secretion translocon protein SspC is inserted into the epithelial cell plasma membrane upon infection. Mol Microbiol 37:1133–1145
    [Google Scholar]
  37. Schmidt H., Hensel M. 2004; Pathogenicity islands in bacterial pathogenesis. Clin Microbiol Rev 17:14–56
    [Google Scholar]
  38. Steele-Mortimer O., Brumell J. H., Knodler L. A., Meresse S., Lopez A., Finlay B. B. 2002; The invasion-associated type III secretion system of Salmonella enterica serovar Typhimurium is necessary for intracellular proliferation and vacuole biogenesis in epithelial cells. Cell Microbiol 4:43–54
    [Google Scholar]
  39. Su J., Gong H., Lai J., Main A., Lu S. 2009; The potassium transporter Trk and external potassium modulate Salmonella enterica protein secretion and virulence. Infect Immun 77:667–675
    [Google Scholar]
  40. Sukhan A., Kubori T., Wilson J., Galan J. E. 2001; Genetic analysis of assembly of the Salmonella enterica serovar Typhimurium type III secretion-associated needle complex. J Bacteriol 183:1159–1167
    [Google Scholar]
  41. Tartera C., Metcalf E. S. 1993; Osmolarity and growth phase overlap in regulation of Salmonella typhi adherence to and invasion of human intestinal cells. Infect Immun 61:3084–3089
    [Google Scholar]
  42. Van Immerseel F., De Buck J., De Smet I., Pasmans F., Haesebrouck F., Ducatelle R. 2004a; Interactions of butyric acid- and acetic acid-treated Salmonella with chicken primary cecal epithelial cells in vitro. Avian Dis 48:384–391
    [Google Scholar]
  43. Van Immerseel F., Fievez V., de Buck J., Pasmans F., Martel A., Haesebrouck F., Ducatelle R. 2004b; Microencapsulated short-chain fatty acids in feed modify colonization and invasion early after infection with Salmonella enteritidis in young chickens. Poult Sci 83:69–74
    [Google Scholar]
  44. Waterman S. R., Holden D. W. 2003; Functions and effectors of the Salmonella pathogenicity island 2 type III secretion system. Cell Microbiol 5:501–511
    [Google Scholar]
  45. Winnen B., Schlumberger M. C., Sturm A., Schupbach K., Siebenmann S., Jenny P., Hardt W. D. 2008; Hierarchical effector protein transport by the Salmonella Typhimurium SPI-1 type III secretion system. PLoS One 3:e2178
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.032318-0
Loading
/content/journal/micro/10.1099/mic.0.032318-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error