1887

Abstract

The LysR-type transcriptional regulator (LTTR) OxyR orchestrates the defence of the opportunistic pathogen against reactive oxygen species. In previous work we also demonstrated that OxyR is needed for the utilization of the ferrisiderophore pyoverdine, stressing the importance of this regulator. Here, we show that an mutant is unable to swarm on agar plates, probably as a consequence of absence of production of rhamnolipid surfactant molecules. Another obvious phenotypic change was the increased production of the phenazine redox-active molecule pyocyanin in the mutant. As already described, the mutant could not grow in LB medium, unless high numbers of cells (>10 ml) were inoculated. However, its growth in Pseudomonas P agar (King's A), a medium inducing pyocyanin production, was like that of the wild-type, suggesting a protective action of this redox-active phenazine compound. This was confirmed by the restoration of the capacity to grow in LB medium upon addition of pure pyocyanin. Although both rhamnolipid and pyocyanin production are controlled by quorum sensing, no obvious changes were observed in the production of -acylhomoserine lactones or the quinolone signal (PQS). Complementation of rhamnolipid production and motility, and restoration of normal pyocyanin levels, was only possible when the gene was in single copy, while pyocyanin levels were increased when was present in a multicopy vector. Conversely, plating efficiency was increased only when the gene was present in multicopy, but not when in single copy in the chromosome, due to lower expression of compared with the wild-type, suggesting that some phenotypes are differently affected in function to the levels of OxyR molecules in the cell. Analysis of transcripts of oxidative stress-response enzymes showed a strong decrease of , and expression in the mutant grown in LB, but this was not the case when the mutant was grown on P agar, suggesting that the OxyR dependency for the transcription of these genes is not total.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.031971-0
2010-03-01
2019-10-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/3/678.html?itemId=/content/journal/micro/10.1099/mic.0.031971-0&mimeType=html&fmt=ahah

References

  1. Bollinger, N., Hassett, D. J., Iglewski, B. H., Costerton, J.W. & McDermott, T. R. ( 2001; ). Gene expressionin Pseudomonas aeruginosa: evidence of iron override effects on quorumsensing and biofilm-specific gene regulation. J Bacteriol 183, 1990–1996.[CrossRef]
    [Google Scholar]
  2. Caiazza, N. C., Shanks, R. M. & O'Toole, G. A. ( 2005; ). Rhamnolipids modulate swarming motility patternsof Pseudomonas aeruginosa. J Bacteriol 187, 7351–7361.[CrossRef]
    [Google Scholar]
  3. Choi, K. H. & Schweizer, H. P. ( 2006; ). Mini-Tn7 insertion in bacteria with single attTn7 sites: example Pseudomonas aeruginosa. Nat Protoc 1, 153–161.[CrossRef]
    [Google Scholar]
  4. Choi, K. H., Kumar, A. & Schweizer, H. P. ( 2006; ). A 10-min method for preparation of highly electrocompetent Pseudomonas aeruginosa cells: application for DNA fragment transfer betweenchromosomes and plasmid transformation. J Microbiol Methods 64, 391–397.[CrossRef]
    [Google Scholar]
  5. Cornelis, P., Bouia, A., Belarbi, A., Guyonvarch, A., Kammerer,B., Hannaert, V. & Hubert, J. C. ( 1989; ). Cloningand analysis of the gene for the major outer membrane lipoprotein from Pseudomonas aeruginosa. Mol Microbiol 3, 421–428.[CrossRef]
    [Google Scholar]
  6. Danese, P. N., Pratt, L. A. & Kolter, R. ( 2000; ). Exopolysaccharide production is required for developmentof Escherichia coli K-12 biofilm architecture. J Bacteriol 182, 3593–3596.[CrossRef]
    [Google Scholar]
  7. Davey, M. E., Caiazza, N. C. & O'Toole, G. A. ( 2003; ). Rhamnolipid surfactant production affects biofilmarchitecture in Pseudomonas aeruginosa PAO1. J Bacteriol 185, 1027–1036.[CrossRef]
    [Google Scholar]
  8. Dietrich, L. E., Price-Whelan, A., Petersen, A., Whiteley, M. &Newman, D. K. ( 2006; ). The phenazine pyocyanin is aterminal signalling factor in the quorum sensing network of Pseudomonasaeruginosa. Mol Microbiol 61, 1308–1321.[CrossRef]
    [Google Scholar]
  9. Dietrich, L. E., Teal, T. K., Price-Whelan, A. & Newman,D. K. ( 2008; ). Redox-active antibiotics control geneexpression and community behavior in divergent bacteria. Science 321, 1203–1206.[CrossRef]
    [Google Scholar]
  10. Elzer, P. H., Kovach, M. E., Phillips, R. W., Robertson, G.T., Peterson, K. M. & Roop, R. M., II ( 1995; ).In vivo and in vitro stability of the broad-host-range cloning vector pBBR1MCSin six Brucella species. Plasmid 33, 51–57.[CrossRef]
    [Google Scholar]
  11. Fletcher, M. P., Diggle, S. P., Crusz, S. A., Chhabra, S. R.,Camara, M. & Williams, P. ( 2007; ). A dual biosensorfor 2-alkyl-4-quinolone quorum-sensing signal molecules. EnvironMicrobiol 9, 2683–2693.
    [Google Scholar]
  12. Hanahan, D. ( 1983; ). Studies on transformationof Escherichia coli with plasmids. J Mol Biol 166, 557–580.[CrossRef]
    [Google Scholar]
  13. Hassett, D. J., Charniga, L., Bean, K., Ohman, D. E. & Cohen,M. S. ( 1992; ). Response of Pseudomonas aeruginosa to pyocyanin: mechanisms of resistance, antioxidant defenses, and demonstrationof a manganese-cofactored superoxide dismutase. Infect Immun 60, 328–336.
    [Google Scholar]
  14. Hassett, D. J., Ma, J. F., Elkins, J. G., McDermott, T. R.,Ochsner, U. A., West, S. E., Huang, C. T., Fredericks, J., Burnett, S. &other authors ( 1999; ). Quorum sensing in Pseudomonasaeruginosa controls expression of catalase and superoxide dismutase genesand mediates biofilm susceptibility to hydrogen peroxide. Mol Microbiol 34, 1082–1093.[CrossRef]
    [Google Scholar]
  15. Hassett, D. J., Alsabbagh, E., Parvatiyar, K., Howell, M. L.,Wilmott, R. W. & Ochsner, U. A. ( 2000; ). A protease-resistantcatalase, KatA, released upon cell lysis during stationary phase is essentialfor aerobic survival of a Pseudomonas aeruginosa oxyR mutant at lowcell densities. J Bacteriol 182, 4557–4563.[CrossRef]
    [Google Scholar]
  16. Hentzer, M., Riedel, K., Rasmussen, T. B., Heydorn, A., Andersen,J. B., Parsek, M. R., Rice, S. A., Eberl, L., Molin, S. & other authors ( 2002; ). Inhibition of quorum sensing in Pseudomonasaeruginosa biofilm bacteria by a halogenated furanone compound. Microbiology 148, 87–102.
    [Google Scholar]
  17. Herrero, M., de Lorenzo, V. & Timmis, K. N. ( 1990; ). Transposon vectors containing non-antibiotic resistanceselection markers for cloning and stable chromosomal insertion of foreigngenes in gram-negative bacteria. J Bacteriol 172, 6557–6567.
    [Google Scholar]
  18. Kim, E. J., Wang, W., Deckwer, W. D. & Zeng, A. P. ( 2005; ). Expression of the quorum-sensing regulatory proteinLasR is strongly affected by iron and oxygen concentrations in cultures of Pseudomonas aeruginosa irrespective of cell density. Microbiology 151, 1127–1138.[CrossRef]
    [Google Scholar]
  19. Kohler, T., Curty, L. K., Barja, F., van Delden, C. & Pechere,J. C. ( 2000; ). Swarming of Pseudomonas aeruginosa is dependent on cell-to-cell signaling and requires flagella and pili. J Bacteriol 182, 5990–5996.[CrossRef]
    [Google Scholar]
  20. Kovach, M. E., Phillips, R. W., Elzer, P. H., Roop, R. M. &Peterson, K. M. ( 1994; ). pBBR1MCS, a broad-host-rangecloning vector. Biotechniques 16, 800–801.
    [Google Scholar]
  21. Lau, G. W., Britigan, B. E. & Hassett, D. J. ( 2005; ). Pseudomonas aeruginosa OxyR is required for fullvirulence in rodent and insect models of infection and for resistance to humanneutrophils. Infect Immun 73, 2550–2553.[CrossRef]
    [Google Scholar]
  22. Livak, K. J. & Schmittgen, T. D. ( 2001; ). Analysis of relative gene expression data using real-time quantitativePCR and the method. Methods 25, 402–408.[CrossRef]
    [Google Scholar]
  23. Maddocks, S. E. & Oyston, P. C. ( 2008; ). Structure and function of the LysR-type transcriptional regulator (LTTR)family proteins. Microbiology 154, 3609–3623.[CrossRef]
    [Google Scholar]
  24. Mavrodi, D. V., Bonsall, R. F., Delaney, S. M., Soule, M. J.,Phillips, G. & Thomashow, L. S. ( 2001; ). Functionalanalysis of genes for biosynthesis of pyocyanin and phenazine-1-carboxamidefrom Pseudomonas aeruginosa PAO1. J Bacteriol 183, 6454–6465.[CrossRef]
    [Google Scholar]
  25. McClean, K. H., Winson, M. K., Fish, L., Taylor, A., Chhabra,S. R., Camara, M., Daykin, M., Lamb, J. H., Swift, S. & other authors ( 1997; ). Quorum sensing and Chromobacterium violaceum: exploitation of violacein production and inhibition for the detectionof N-acylhomoserine lactones. Microbiology 143, 3703–3711.[CrossRef]
    [Google Scholar]
  26. McMichael, J. C. ( 1992; ). Bacterial differentiationwithin Moraxella bovis colonies growing at the interface of the agarmedium with the Petri dish. J Gen Microbiol 138, 2687–2695.[CrossRef]
    [Google Scholar]
  27. Ochsner, U. A., Vasil, M. L., Alsabbagh, E., Parvatiyar, K. &Hassett, D. J. ( 2000; ). Role of the Pseudomonasaeruginosa oxyR-recG operon in oxidative stress defense and DNA repair:OxyR-dependent regulation of katB-ankB, ahpB, and ahpC-ahpF. J Bacteriol 182, 4533–4544.[CrossRef]
    [Google Scholar]
  28. Panmanee, W., Gomez, F., Witte, D., Pancholi, V., Britigan,B. E. & Hassett, D. J. ( 2008; ). The peptidoglycan-associatedlipoprotein OprL helps protect a Pseudomonas aeruginosa mutant devoidof the transactivator OxyR from hydrogen peroxide-mediated killing duringplanktonic and biofilm culture. J Bacteriol 190, 3658–3669.[CrossRef]
    [Google Scholar]
  29. Price-Whelan, A., Dietrich, L. E. & Newman, D. K. ( 2006; ). Rethinking ‘secondary' metabolism: physiologicalroles for phenazine antibiotics. Nat Chem Biol 2, 71–78.[CrossRef]
    [Google Scholar]
  30. Price-Whelan, A., Dietrich, L. E. & Newman, D. K. ( 2007; ). Pyocyanin alters redox homeostasis and carbon fluxthrough central metabolic pathways in Pseudomonas aeruginosa PA14. J Bacteriol 189, 6372–6381.[CrossRef]
    [Google Scholar]
  31. Reszka, K. J., O'Malley, Y., McCormick, M. L., Denning,G. M. & Britigan, B. E. ( 2004; ). Oxidation of pyocyanin,a cytotoxic product from Pseudomonas aeruginosa, by microperoxidase11 and hydrogen peroxide. Free Radic Biol Med 36, 1448–1459.[CrossRef]
    [Google Scholar]
  32. Shaw, P. D., Ping, G., Daly, S. L., Cha, C., Cronan, J. E.,Jr, Rinehart, K. L. & Farrand, S. K. ( 1997; ). Detectingand characterizing N-acyl-homoserine lactone signal molecules bythin-layer chromatography. Proc Natl Acad Sci U S A 94, 6036–6041.[CrossRef]
    [Google Scholar]
  33. Siegmund, I. & Wagner, F. ( 1991; ).New method for detecting rhamnolipids excreted by Pseudomonas speciesduring growth on mineral agar. Biotechnol Tech 5, 265–268.[CrossRef]
    [Google Scholar]
  34. Simon, R., Priefer, U. & Pühler, A. ( 1983; ). A broad host range mobilization system for in vivogenetic engineering: transposon mutagenesis in gram negative bacteria. Biotechnology 1, 784–791.[CrossRef]
    [Google Scholar]
  35. Storz, G. & Imlay, J. A. ( 1999; ).Oxidative stress. Curr Opin Microbiol 2, 188–194.[CrossRef]
    [Google Scholar]
  36. Vinckx, T., Matthijs, S. & Cornelis, P. ( 2008; ). Loss of the oxidative stress regulator OxyR in Pseudomonasaeruginosa PAO1 impairs growth under iron-limited conditions. FEMS Microbiol Lett 288, 258–265.[CrossRef]
    [Google Scholar]
  37. Wangt, Y. & Newman, D. K. ( 2008; ).Redox reactions of phenazine antibiotics with ferric (hydr)oxidesand molecular oxygen. Environ Sci Technol 42, 2380–2386.[CrossRef]
    [Google Scholar]
  38. Williams, P. ( 2007; ). Quorum sensing,communication and cross-kingdom signalling in the bacterial world. Microbiology 153, 3923–3938.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.031971-0
Loading
/content/journal/micro/10.1099/mic.0.031971-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error