1887

Abstract

Anthranilate is an important intermediate of tryptophan metabolism. In this study, a hydroxylase system consisting of an FADH-utilizing monooxygenase (GTNG_3160) and an FAD reductase (GTNG_3158), as well as a bifunctional riboflavin kinase/FMN adenylyltransferase (GTNG_3159), encoded in the anthranilate degradation gene cluster in NG80-2 were functionally characterized . GTNG_3159 produces FAD to be reduced by GTNG_3158 and the reduced FAD (FADH) is utilized by GTNG_3160 to convert anthranilate to 3-hydroxyanthranilate (3-HAA), which is further degraded to acetyl-CoA through a -cleavage pathway also encoded in the gene cluster. Utilization of this pathway for the degradation of anthranilate and tryptophan by NG80-2 under physiological conditions was confirmed by real-time RT-PCR analysis of representative genes. This is believed to be the first time that the degradation pathway of anthranilate via 3-HAA has been characterized in a bacterium. This pathway is likely to play an important role in the survival of in the oil reservoir conditions from which strain NG80-2 was isolated.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.031880-0
2010-02-01
2019-10-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/2/589.html?itemId=/content/journal/micro/10.1099/mic.0.031880-0&mimeType=html&fmt=ahah

References

  1. Agarwal, R., Bonanno, J. B., Burley, S. K. & Swaminathan, S. ( 2006; ). Structure determination of an FMN reductase from Pseudomonas aeruginosa PAO1 using sulfur anomalous signal. Acta Crystallogr D Biol Crystallogr 62, 383–391.[CrossRef]
    [Google Scholar]
  2. Bradford, M. M. ( 1976; ). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72, 248–254.[CrossRef]
    [Google Scholar]
  3. Chaiyen, P., Suadee, C. & Wilairat, P. ( 2001; ). A novel two-protein component flavoprotein hydroxylase. Eur J Biochem 268, 5550–5561.[CrossRef]
    [Google Scholar]
  4. Chang, H. K., Mohseni, P. & Zylstra, G. J. ( 2003; ). Characterization and regulation of the genes for a novel anthranilate 1,2-dioxygenase from Burkholderia cepacia DBO1. J Bacteriol 185, 5871–5881.[CrossRef]
    [Google Scholar]
  5. Cho, O., Choi, K. Y., Zylstra, G. J., Kim, Y. S., Kim, S. K., Lee, J. H., Sohn, H. Y., Kwon, G. S., Kim, Y. M. & Kim, E. ( 2005; ). Catabolic role of a three-component salicylate oxygenase from Sphingomonas yanoikuyae B1 in polycyclic aromatic hydrocarbon degradation. Biochem Biophys Res Commun 327, 656–662.[CrossRef]
    [Google Scholar]
  6. Eichhorn, E., van der Ploeg, J. R. & Leisinger, T. ( 1999; ). Characterization of a two-component alkanesulfonate monooxygenase from Escherichia coli. J Biol Chem 274, 26639–26646.[CrossRef]
    [Google Scholar]
  7. Entsch, B., Cole, L. J. & Ballou, D. P. ( 2005; ). Protein dynamics and electrostatics in the function of p-hydroxybenzoate hydroxylase. Arch Biochem Biophys 433, 297–311.[CrossRef]
    [Google Scholar]
  8. Feng, L., Wang, W., Cheng, J., Ren, Y., Zhao, G., Gao, C., Tang, Y., Liu, X., Han, W. & other authors ( 2007; ). Genome and proteome of long-chain alkane degrading Geobacillus thermodenitrificans NG80-2 isolated from a deep-subsurface oil reservoir. Proc Natl Acad Sci U S A 104, 5602–5607.[CrossRef]
    [Google Scholar]
  9. Fetzner, S. ( 2000; ). Enzymes involved in the aerobic bacterial degradation of N-heteroaromatic compounds: molybdenum hydroxylases and ring-opening 2,4-dioxygenases. Naturwissenschaften 87, 59–69.[CrossRef]
    [Google Scholar]
  10. Friemann, R., Lee, K., Brown, E. N., Gibson, D. T., Eklund, H. & Ramaswamy, S. ( 2009; ). Structures of the multicomponent Rieske non-heme iron toluene 2,3-dioxygenase enzyme system. Acta Crystallogr D Biol Crystallogr 65, 24–33.[CrossRef]
    [Google Scholar]
  11. Hayaishi, O. & Stanier, R. Y. ( 1951; ). The bacterial oxidation of tryptophan. III. Enzymatic activities of cell-free extracts from bacteria employing the aromatic pathway. J Bacteriol 62, 691–709.
    [Google Scholar]
  12. Jequier, E., Robinson, D. S., Lovenberg, W. & Sjoerdsma, A. ( 1969; ). Further studies on tryptophan hydroxylase in rat brainstem and beef pineal. Biochem Pharmacol 18, 1071–1081.[CrossRef]
    [Google Scholar]
  13. Jouanneau, Y., Micoud, J. & Meyer, C. ( 2007; ). Purification and characterization of a three-component salicylate 1-hydroxylase from Sphingomonas sp. strain CHY-1. Appl Environ Microbiol 73, 7515–7521.[CrossRef]
    [Google Scholar]
  14. Kamath, A. V. & Vaidyanathan, C. S. ( 1990; ). New pathway for the biodegradation of indole in Aspergillus niger. Appl Environ Microbiol 56, 275–280.
    [Google Scholar]
  15. Laemmli, U. K. ( 1970; ). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685.[CrossRef]
    [Google Scholar]
  16. Louie, T. M., Xie, X. S. & Xun, L. ( 2003; ). Coordinated production and utilization of FADH2 by NAD(P)H-flavin oxidoreductase and 4-hydroxyphenylacetate 3-monooxygenase. Biochemistry 42, 7509–7517.[CrossRef]
    [Google Scholar]
  17. Muraki, T., Taki, M., Hasegawa, Y., Iwaki, H. & Lau, P. C. ( 2003; ). Prokaryotic homologs of the eukaryotic 3-hydroxyanthranilate 3,4-dioxygenase and 2-amino-3-carboxymuconate-6-semialdehyde decarboxylase in the 2-nitrobenzoate degradation pathway of Pseudomonas fluorescens strain KU-7. Appl Environ Microbiol 69, 1564–1572.[CrossRef]
    [Google Scholar]
  18. Nair, P. M. & Vaidyanathan, C. S. ( 1965; ). Anthranilic acid hydroxylase from Tecoma stans. Biochim Biophys Acta 110, 521–531.[CrossRef]
    [Google Scholar]
  19. Nojiri, H., Sekiguchi, H., Maeda, K., Urata, M., Nakai, S., Yoshida, T., Habe, H. & Omori, T. ( 2001; ). Genetic characterization and evolutionary implications of a car gene cluster in the carbazole degrader Pseudomonas sp. strain CA10. J Bacteriol 183, 3663–3679.[CrossRef]
    [Google Scholar]
  20. Notomista, E., Cafaro, V., Bozza, G. & Di Donato, A. ( 2009; ). Molecular determinants of the regioselectivity of toluene/o-xylene monooxygenase from Pseudomonas sp. strain OX1. Appl Environ Microbiol 75, 823–836.[CrossRef]
    [Google Scholar]
  21. Swetha, V. P., Basu, A. & Phale, P. S. ( 2007; ). Purification and characterization of 1-naphthol-2-hydroxylase from carbaryl-degrading Pseudomonas strain C4. J Bacteriol 189, 2660–2666.[CrossRef]
    [Google Scholar]
  22. Tulchin, N., Ornstein, L. & Davis, B. J. ( 1976; ). A microgel system for disc electrophoresis. Anal Biochem 72, 485–490.[CrossRef]
    [Google Scholar]
  23. Wang, L., Tang, Y., Wang, S., Liu, R. L., Liu, M. Z., Zhang, Y., Liang, F. L. & Feng, L. ( 2006; ). Isolation and characterization of a novel thermophilic Bacillus strain degrading long-chain n-alkanes. Extremophiles 10, 347–356.[CrossRef]
    [Google Scholar]
  24. Yanofsky, C. ( 1956; ). The enzymatic conversion of anthranilic acid to indole. J Biol Chem 223, 171–184.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.031880-0
Loading
/content/journal/micro/10.1099/mic.0.031880-0
Loading

Data & Media loading...

Supplements

vol. , part 2, pp. 589 - 595

Real-time RT-PCR analysis of the transcription levels of , , , and in NG80-2 cells grown with sucrose, anthranilate and tryptophan [ PDF] (108 kb)



PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error