1887

Abstract

Propionyl-CoA is an inhibitor of both primary and secondary metabolism in species and a functional methylcitrate cycle is essential for the efficient removal of this potentially toxic metabolite. Although the genomes of most sequenced fungal species appear to contain genes coding for enzymes of the methylcitrate cycle, experimental confirmation of pathway activity in filamentous fungi has only been provided for and . In this study we demonstrate that pathogenic species also possess a functional methylcitrate cycle. appears highly adapted to saprophytic growth as it utilized propionate with high efficiency, whereas grew poorly on this carbon source. In order to elucidate the mechanisms of propionyl-CoA detoxification, we first identified the genes coding for methylcitrate synthase from both species. Despite sharing 96 % amino acid sequence identity, analysis of the two purified enzymes demonstrated that their biochemical properties differed in several respects. Both methylcitrate synthases exhibited low values for propionyl-CoA, but that of displayed significantly higher citrate synthase activity and greater thermal stability. Activity determinations from cell-free extracts of revealed a strong methylcitrate synthase activity during growth on propionate and to a lesser extent on Casamino acids, whereas activity by was highest on Casamino acids. Further phenotypic analysis confirmed that these biochemical differences were reflected in the different growth behaviour of the two species on propionyl-CoA-generating carbon sources.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.031781-0
2009-12-01
2020-04-05
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/12/3903.html?itemId=/content/journal/micro/10.1099/mic.0.031781-0&mimeType=html&fmt=ahah

References

  1. Bacon C. W., Yates I. E., Hinton D. M., Meredith F.. 2001; Biological control of Fusarium moniliforme in maize. Environ Health Perspect109 (Suppl. 2):325–332
    [Google Scholar]
  2. Breathnach R., Benoist C., O'Hare K., Gannon F., Chambon P.. 1978; Ovalbumin gene: evidence for a leader sequence in mRNA and DNA sequences at the exon-intron boundaries. Proc Natl Acad Sci U S A75:4853–4857
    [Google Scholar]
  3. Brock M.. 2005; Generation and phenotypic characterization of Aspergillus nidulans methylisocitrate lyase deletion mutants: methylisocitrate inhibits growth and conidiation. Appl Environ Microbiol71:5465–5475
    [Google Scholar]
  4. Brock M., Buckel W.. 2004; On the mechanism of action of the antifungal agent propionate. Eur J Biochem271:3227–3241
    [Google Scholar]
  5. Brock M., Fischer R., Linder D., Buckel W.. 2000; Methylcitrate synthase from Aspergillus nidulans: implications for propionate as an antifungal agent. Mol Microbiol35:961–973
    [Google Scholar]
  6. Brock M., Darley D., Textor S., Buckel W.. 2001; 2-Methylisocitrate lyases from the bacterium Escherichia coli and the filamentous fungus Aspergillus nidulans: characterization and comparison of both enzymes. Eur J Biochem268:3577–3586
    [Google Scholar]
  7. Brock M., Maerker C., Schutz A., Volker U., Buckel W.. 2002; Oxidation of propionate to pyruvate in Escherichia coli. Involvement of methylcitrate dehydratase and aconitase. Eur J Biochem269:6184–6194
    [Google Scholar]
  8. Brown D. W., Butchko R. A., Proctor R. H.. 2008; Genomic analysis of Fusarium verticillioides. Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 251158–1165
  9. Burand J. P., Drillien R., Bhattacharjee J. K.. 1975; Citrate synthaseless glutamic acid auxotroph of Saccharomyces cerevisiae. Mol Gen Genet139:303–309
    [Google Scholar]
  10. De Lucca A. J.. 2007; Harmful fungi in both agriculture and medicine. Rev Iberoam Micol24:3–13
    [Google Scholar]
  11. Ebel F., Schwienbacher M., Beyer J., Heesemann J., Brakhage A. A., Brock M.. 2006; Analysis of the regulation, expression, and localisation of the isocitrate lyase from Aspergillus fumigatus, a potential target for antifungal drug development. Fungal Genet Biol43:476–489
    [Google Scholar]
  12. Gelderblom W. C., Marasas W. F., Jaskiewicz K., Combrinck S., van Schalkwyk D. J.. 1988; Cancer promoting potential of different strains of Fusarium moniliforme in a short-term cancer initiation/promotion assay. Carcinogenesis9:1405–1409
    [Google Scholar]
  13. Horswill A. R., Escalante-Semerena J. C.. 2001; In vitro conversion of propionate to pyruvate by Salmonella enterica enzymes: 2-methylcitrate dehydratase (PrpD) and aconitase enzymes catalyze the conversion of 2-methylcitrate to 2-methylisocitrate. Biochemistry40:4703–4713
    [Google Scholar]
  14. Hortschansky P., Eisendle M., Al-Abdallah Q., Schmidt A. D., Bergmann S., Thön M, Kniemeyer O., Abt B., Seeber B.. other authors 2007; Interaction of HapX with the CCAAT-binding complex – a novel mechanism of gene regulation by iron. EMBO J26:3157–3168
    [Google Scholar]
  15. Hue F. X., Huerre M., Rouffault M. A., de Bievre C.. 1999; Specific detection of Fusarium species in blood and tissues by a PCR technique. J Clin Microbiol37:2434–2438
    [Google Scholar]
  16. Ibrahim-Granet O., Dubourdeau M., Latgé J. P., Ave P., Huerre M., Brakhage A. A., Brock M.. 2008; Methylcitrate synthase from Aspergillus fumigatus is essential for manifestation of invasive aspergillosis. Cell Microbiol10:134–148
    [Google Scholar]
  17. Jestoi M.. 2008; Emerging fusarium-mycotoxins fusaproliferin, beauvericin, enniatins, and moniliformin: a review. Crit Rev Food Sci Nutr48:21–49
    [Google Scholar]
  18. Jurgenson J. E., Zeller K. A., Leslie J. F.. 2002; Expanded genetic map of Gibberella moniliformis ( Fusarium verticillioides. Appl Environ Microbiol68:1972–1979
    [Google Scholar]
  19. Ledley F. D., Crane A. M., Klish K. T., May G. S.. 1991; Is there methylmalonyl-CoA mutase in Aspergillus nidulans?. Biochem Biophys Res Commun177:1076–1081
    [Google Scholar]
  20. Luttik M. A., Kotter P., Salomons F. A., van der Klei I. J., van Dijken J. P., Pronk J. T.. 2000; The Saccharomyces cerevisiae ICL2 gene encodes a mitochondrial 2-methylisocitrate lyase involved in propionyl-coenzyme A metabolism. J Bacteriol182:7007–7013
    [Google Scholar]
  21. Maerker C., Rohde M., Brakhage A. A., Brock M.. 2005; Methylcitrate synthase from Aspergillus fumigatus. Propionyl-CoA affects polyketide synthesis, growth and morphology of conidia. FEBS J272:3615–3630
    [Google Scholar]
  22. Martens J. H., Barg H., Warren M. J., Jahn D.. 2002; Microbial production of vitamin B12. Appl Microbiol Biotechnol58:275–285
    [Google Scholar]
  23. Mayayo E., Pujol I., Guarro J.. 1999; Experimental pathogenicity of four opportunist Fusarium species in a murine model. J Med Microbiol48:363–366
    [Google Scholar]
  24. O'Donnell K., Sutton D. A., Fothergill A., McCarthy D., Rinaldi M. G., Brandt M. E., Zhang N., Geiser D. M.. 2008; Molecular phylogenetic diversity, multilocus haplotype nomenclature, and in vitro antifungal resistance within the Fusarium solani species complex. J Clin Microbiol46:2477–2490
    [Google Scholar]
  25. Ruijter G. J., Panneman H., Xu D., Visser J.. 2000; Properties of Aspergillus niger citrate synthase and effects of citA overexpression on citric acid production. FEMS Microbiol Lett184:35–40
    [Google Scholar]
  26. Schollenberger M., Müller H. M., Rüfle M., Terry-Jara H., Suchy S., Plank S., Drochner W.. 2007; Natural occurrence of Fusarium toxins in soy food marketed in Germany. Int J Food Microbiol113:142–146
    [Google Scholar]
  27. Selwet M.. 2008; Effect of organic acids on numbers of yeasts and mould fungi and aerobic stability in the silage of corn. Pol J Vet Sci11:119–123
    [Google Scholar]
  28. Textor S., Wendisch V. F., De Graaf A. A., Müller U., Linder M. I., Linder D., Buckel W.. 1997; Propionate oxidation in Escherichia coli: evidence for operation of a methylcitrate cycle in bacteria. Arch Microbiol168:428–436
    [Google Scholar]
  29. Uchiyama H., Ando M., Toyonaka Y., Tabuchi T.. 1982; Subcellular localization of the methylcitric-acid-cycle enzymes in propionate metabolism of Yarrowia lipolytica. Eur J Biochem125:523–527
    [Google Scholar]
  30. Voet D., Voet J. G.. 2004; Biochemistry , 3rd edn. Chichester: Wiley;
    [Google Scholar]
  31. Völkl A., Vogler B., Schollenberger M., Karlovsky P.. 2004; Microbial detoxification of mycotoxin deoxynivalenol. J Basic Microbiol44:147–156
    [Google Scholar]
  32. Zhang Y. Q., Keller N. P.. 2004; Blockage of methylcitrate cycle inhibits polyketide production in Aspergillus nidulans. Mol Microbiol52:541–550
    [Google Scholar]
  33. Zhang Y. Q., Brock M., Keller N. P.. 2004; Connection of propionyl-CoA metabolism to polyketide biosynthesis in Aspergillus nidulans. Genetics168:785–794
    [Google Scholar]
  34. Zhang N., O'Donnell K., Sutton D. A., Nalim F. A., Summerbell R. C., Padhye A. A., Geiser D. M.. 2006; Members of the Fusarium solani species complex that cause infections in both humans and plants are common in the environment. J Clin Microbiol44:2186–2190
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.031781-0
Loading
/content/journal/micro/10.1099/mic.0.031781-0
Loading

Data & Media loading...

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error