1887

Abstract

The development of antibacterial resistance is inevitable and is a major concern in hospitals and communities. Moreover, biofilm-grown bacteria are less sensitive to antimicrobial treatment. In this respect, the Gram-positive is an important source of nosocomial biofilm-associated infections. In the search for new antibacterial therapies, the type I signal peptidase (SPase I) serves as a potential target for development of antibacterials with a novel mode of action. This enzyme cleaves off the signal peptide from secreted proteins, making it essential for protein secretion, and hence for bacterial cell viability. encodes three putative SPases I (denoted Sip1, Sip2 and Sip3), of which Sip1 lacks the catalytic lysine. In this report, we investigated the active SPases I in more detail. Sip2 and Sip3 were found to complement a temperature-sensitive mutant, demonstrating their functional activity. functional activity of purified Sip2 and Sip3 proteins and inhibition of their activity by the SPase I inhibitor arylomycin A were further illustrated using a fluorescence resonance energy transfer (FRET)-based assay. Furthermore, we demonstrated that SPase I not only is an attractive target for development of novel antibacterials against free-living bacteria, but also is a feasible target for biofilm-associated infections.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.031765-0
2009-11-01
2021-03-01
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/11/3719.html?itemId=/content/journal/micro/10.1099/mic.0.031765-0&mimeType=html&fmt=ahah

References

  1. Allsop A., Brooks G., Edwards P. D., Kaura A. C., Southgate R. 1996; Inhibitors of bacterial signal peptidase: a series of 6-(substituted oxyethyl)penems. J Antibiot (Tokyo ) 49:921–928
    [Google Scholar]
  2. Black M. T. 1993; Evidence that the catalytic activity of prokaryote leader peptidase depends upon the operation of a serine–lysine catalytic dyad. J Bacteriol 175:4957–4961
    [Google Scholar]
  3. Black M. T., Bruton G. 1998; Inhibitors of bacterial signal peptidases. Curr Pharm Des 4:133–154
    [Google Scholar]
  4. Bockstael K., Geukens N., Rao C. V., Herdewijn P., Anne J., Van Aerschot A. 2009; An easy and fast method for the evaluation of Staphylococcus epidermidis type I signal peptidase inhibitors. J Microbiol Methods 78:231–237
    [Google Scholar]
  5. Bruton G., Huxley A., O'Hanlon P., Orlek B., Eggleston D., Humphries J., Readshaw S., West A., Ashman S. other authors 2003; Lipopeptide substrates for SpsB, the Staphylococcus aureus type I signal peptidase: design, conformation and conversion to α-ketoamide inhibitors. Eur J Med Chem 38:351–356
    [Google Scholar]
  6. Christensen G. D., Simpson W. A., Bisno A. L., Beachey E. H. 1982; Adherence of slime-producing strains of Staphylococcus epidermidis to smooth surfaces. Infect Immun 37:318–326
    [Google Scholar]
  7. Christensen G. D., Simpson W. A., Younger J. J., Baddour L. M., Barrett F. F., Melton D. M., Beachey E. H. 1985; Adherence of coagulase-negative staphylococci to plastic tissue culture plates: a quantitative model for the adherence of staphylococci to medical devices. J Clin Microbiol 22:996–1006
    [Google Scholar]
  8. Cohen M. L. 2000; Changing patterns of infectious disease. Nature 406:762–767
    [Google Scholar]
  9. Cregg K. M., Wilding I., Black M. T. 1996; Molecular cloning and expression of the spsB gene encoding an essential type I signal peptidase from Staphylococcus aureus . J Bacteriol 178:5712–5718
    [Google Scholar]
  10. Dalbey R. E., Lively M. O., Bron S., van Dijl J. M. 1997; The chemistry and enzymology of the type I signal peptidases. Protein Sci 6:1129–1138
    [Google Scholar]
  11. Donlan R. M., Costerton J. W. 2002; Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev 15:167–193
    [Google Scholar]
  12. Geukens N., Lammertyn E., Van Mellaert L., Schacht S., Schaerlaekens K., Parro V., Bron S., Engelborghs Y., Mellado R. P., Anne J. 2001; Membrane topology of the Streptomyces lividans type I signal peptidases. J Bacteriol 183:4752–4760
    [Google Scholar]
  13. Geukens N., Lammertyn E., Van Mellaert L., Engelborghs Y., Mellado R. P., Anne J. 2002; Physical requirements for in vitro processing of the Streptomyces lividans signal peptidases. J Biotechnol 96:79–91
    [Google Scholar]
  14. Hall-Stoodley L., Costerton J. W., Stoodley P. 2004; Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol 2:95–108
    [Google Scholar]
  15. Inada T., Court D. L., Ito K., Nakamura Y. 1989; Conditionally lethal amber mutations in the leader peptidase gene of Escherichia coli . J Bacteriol 171:585–587
    [Google Scholar]
  16. Kavanaugh J. S., Thoendel M., Horswill A. R. 2007; A role for type I signal peptidase in Staphylococcus aureus quorum sensing. Mol Microbiol 65:780–798
    [Google Scholar]
  17. Kulanthaivel P., Kreuzman A. J., Strege M. A., Belvo M. D., Smitka T. A., Clemens M., Swartling J. R., Minton K. L., Zheng F. other authors 2004; Novel lipoglycopeptides as inhibitors of bacterial signal peptidase I. J Biol Chem 279:36250–36258
    [Google Scholar]
  18. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685
    [Google Scholar]
  19. Lammertyn E., Van Mellaert L., Meyen E., Lebeau I., De Buck E., Anne J., Geukens N. 2004; Molecular and functional characterization of type I signal peptidase from Legionella pneumophila . Microbiology 150:1475–1483
    [Google Scholar]
  20. Li X., Yan Z., Xu J. 2003; Quantitative variation of biofilms among strains in natural populations of Candida albicans . Microbiology 149:353–362
    [Google Scholar]
  21. Mack D., Siemssen N., Laufs R. 1992; Parallel induction by glucose of adherence and a polysaccharide antigen specific for plastic-adherent Staphylococcus epidermidis: evidence for functional relation to intercellular adhesion. Infect Immun 60:2048–2057
    [Google Scholar]
  22. Miller J. H. 1972 Experiments in Molecular Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  23. Musial-Siwek M., Kendall D. A., Yeagle P. L. 2008; Solution NMR of signal peptidase, a membrane protein. Biochim Biophys Acta 1778937–944
    [Google Scholar]
  24. NCCLS 2003 Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically: approved standard M7–A6, 6th edn. Wayne, PA: National Committee for Clinical Laboratory Standards;
    [Google Scholar]
  25. Novick R. P. 1991; Genetic systems in staphylococci. Methods Enzymol 204:587–636
    [Google Scholar]
  26. O'Brien J., Wilson I., Orton T., Pognan F. 2000; Investigation of the Alamar Blue (resazurin) fluorescent dye for the assessment of mammalian cell cytotoxicity. Eur J Biochem 267:5421–5426
    [Google Scholar]
  27. O'Gara J. P., Humphreys H. 2001; Staphylococcus epidermidis biofilms: importance and implications. J Med Microbiol 50:582–587
    [Google Scholar]
  28. Paetzel M., Dalbey R. E., Strynadka N. C. 1998; Crystal structure of a bacterial signal peptidase in complex with a β-lactam inhibitor. Nature 396:186–190
    [Google Scholar]
  29. Paetzel M., Dalbey R. E., Strynadka N. C. 2002; Crystal structure of a bacterial signal peptidase apoenzyme: implications for signal peptide binding and the Ser–Lys dyad mechanism. J Biol Chem 277:9512–9519
    [Google Scholar]
  30. Paetzel M., Goodall J. J., Kania M., Dalbey R. E., Page M. G. 2004; Crystallographic and biophysical analysis of a bacterial signal peptidase in complex with a lipopeptide-based inhibitor. J Biol Chem 279:30781–30790
    [Google Scholar]
  31. Pettit R. K., Weber C. A., Kean M. J., Hoffmann H., Pettit G. R., Tan R., Franks K. S., Horton M. L. 2005; Microplate Alamar Blue assay for Staphylococcus epidermidis biofilm susceptibility testing. Antimicrob Agents Chemother 49:2612–2617
    [Google Scholar]
  32. Pitts B., Hamilton M. A., Zelver N., Stewart P. S. 2003; A microtiter-plate screening method for biofilm disinfection and removal. J Microbiol Methods 54:269–276
    [Google Scholar]
  33. Roberts T. C., Smith P. A., Cirz R. T., Romesberg F. E. 2007; Structural and initial biological analysis of synthetic arylomycin A2 . J Am Chem Soc 129:15830–15838
    [Google Scholar]
  34. Romesberg F. E. 2009 Re-evaluating Discarded Antibiotic Candidates Abstracts of the Society for General Microbiology Spring Meeting; Harrogate, UK: 30 March–2 April 2009
    [Google Scholar]
  35. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual , 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  36. Schulin T., Voss A. 2001; Coagulase-negative staphylococci as a cause of infections related to intravascular prosthetic devices: limitations of present therapy. Clin Microbiol Infect 7 (Suppl. 4):1–7
    [Google Scholar]
  37. Strathmann M., Wingender J., Flemming H. C. 2002; Application of fluorescently labelled lectins for the visualization and biochemical characterization of polysaccharides in biofilms of Pseudomonas aeruginosa . J Microbiol Methods 50:237–248
    [Google Scholar]
  38. Studier F. W., Moffatt B. A. 1986; Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J Mol Biol 189:113–130
    [Google Scholar]
  39. Studier F. W., Rosenberg A. H., Dunn J. J., Dubendorff J. W. 1990; Use of T7 RNA polymerase to direct expression of cloned genes. Methods Enzymol 185:60–89
    [Google Scholar]
  40. Sutherland I. 2001; Biofilm exopolysaccharides: a strong and sticky framework. Microbiology 147:3–9
    [Google Scholar]
  41. Tschantz W. R., Sung M., Delgado-Partin V. M., Dalbey R. E. 1993; A serine and a lysine residue implicated in the catalytic mechanism of the Escherichia coli leader peptidase. J Biol Chem 268:27349–27354
    [Google Scholar]
  42. Vandecasteele S. J., Peetermans W. E., Merckx R., Van Ranst M., Van Eldere J. 2002; Use of gDNA as internal standard for gene expression in staphylococci in vitro and in vivo . Biochem Biophys Res Commun 291:528–534
    [Google Scholar]
  43. van Roosmalen M. L., Geukens N., Jongbloed J. D., Tjalsma H., Dubois J. Y., Bron S., van Dijl J. M., Anne J. 2004; Type I signal peptidases of Gram-positive bacteria. Biochim Biophys Acta 1694279–297
    [Google Scholar]
  44. Villain-Guillot P., Gualtieri M., Bastide L., Leonetti J. P. 2007; In vitro activities of different inhibitors of bacterial transcription against Staphylococcus epidermidis biofilm. Antimicrob Agents Chemother 51:3117–3121
    [Google Scholar]
  45. Yoneyama H., Katsumata R. 2006; Antibiotic resistance in bacteria and its future for novel antibiotic development. Biosci Biotechnol Biochem 70:1060–1075
    [Google Scholar]
  46. Zhang Y. Q., Ren S. X., Li H. L., Wang Y. X., Fu G., Yang J., Qin Z. Q., Miao Y. G., Wang W. Y. other authors 2003; Genome-based analysis of virulence genes in a non-biofilm-forming Staphylococcus epidermidis strain (ATCC 12228. Mol Microbiol 49:1577–1593
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.031765-0
Loading
/content/journal/micro/10.1099/mic.0.031765-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error