1887

Abstract

The human pathogen has a classic heat shock response, showing induction of chaperones and proteases plus several unidentified proteins in response to a small increase in growth temperature. The genome contains two homologues to known heat shock response regulators, HrcA and HspR. Previous work has shown that HspR controls several heat-shock genes, but the regulon has not been defined. We have constructed single and double deletions of and and analysed gene expression using microarrays. Only a small number of genes are controlled by these two regulators, and the two regulons overlap. Strains mutated in , but not those mutated in , showed enhanced thermotolerance. Some genes previously identified as being downregulated in a strain lacking showed no change in expression in our experiments.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.031708-0
2010-01-01
2019-11-13
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/1/158.html?itemId=/content/journal/micro/10.1099/mic.0.031708-0&mimeType=html&fmt=ahah

References

  1. Andersen, M. T., Brondsted, L., Pearson, B. M., Mulholland, F., Parker, M., Pin, C., Wells, J. M. & Ingmer, H. ( 2005; ). Diverse roles for HspR in Campylobacter jejuni revealed by the proteome, transcriptome and phenotypic characterization of an hspR mutant. Microbiology 151, 905–915.[CrossRef]
    [Google Scholar]
  2. Benjamini, Y. & Hochberg, Y. ( 1995; ). Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Roy Stat Soc B 57, 289–300.
    [Google Scholar]
  3. Bucca, G., Ferina, G., Puglia, A. M. & Smith, C. P. ( 1995; ). The dnaK operon of Streptomyces coelicolor encodes a novel heat-shock protein which binds to the promoter region of the operon. Mol Microbiol 17, 663–674.[CrossRef]
    [Google Scholar]
  4. Bucca, G., Hindle, Z. & Smith, C. P. ( 1997; ). Regulation of the dnaK operon of Streptomyces coelicolor A3(2) is governed by HspR, an autoregulatory repressor protein. J Bacteriol 179, 5999–6004.
    [Google Scholar]
  5. Bucca, G., Brassington, A. M., Schonfeld, H. J. & Smith, C. P. ( 2000; ). The HspR regulon of Streptomyces coelicolor: a role for the DnaK chaperone as a transcriptional co-repressor. Mol Microbiol 38, 1093–1103.
    [Google Scholar]
  6. Constantinidou, C., Hobman, J. L., Griffiths, L., Patel, M. D., Penn, C. W., Cole, J. A. & Overton, T. W. ( 2006; ). A reassessment of the FNR regulon and transcriptomic analysis of the effects of nitrate, nitrite, NarXL, and NarQP as Escherichia coli K12 adapts from aerobic to anaerobic growth. J Biol Chem 281, 4802–4815.[CrossRef]
    [Google Scholar]
  7. Dorrell, N., Mangan, J. A., Laing, K. G., Hinds, J., Linton, D., Al-Ghusein, H., Barrell, B. G., Parkhill, J., Stoker, N. G. & other authors ( 2001; ). Whole genome comparison of Campylobacter jejuni human isolates using a low-cost microarray reveals extensive genetic diversity. Genome Res 11, 1706–1715.[CrossRef]
    [Google Scholar]
  8. Dougan, D. A., Mogk, A. & Bukau, B. ( 2002; ). Protein folding and degradation in bacteria: to degrade or not to degrade? That is the question. Cell Mol Life Sci 59, 1607–1616.[CrossRef]
    [Google Scholar]
  9. El-Samad, H., Kurata, H., Doyle, J. C., Gross, C. A. & Khammash, M. ( 2005; ). Surviving heat shock: control strategies for robustness and performance. Proc Natl Acad Sci U S A 102, 2736–2741.[CrossRef]
    [Google Scholar]
  10. Elvers, K. T., Turner, S. M., Wainwright, L. M., Marsden, G., Hinds, J., Cole, J. A., Poole, R. K., Penn, C. W. & Park, S. F. ( 2005; ). NssR, a member of the Crp–Fnr superfamily from Campylobacter jejuni, regulates a nitrosative stress-responsive regulon that includes both a single-domain and a truncated haemoglobin. Mol Microbiol 57, 735–750.[CrossRef]
    [Google Scholar]
  11. Gamer, J., Multhaup, G., Tomoyasu, T., McCarty, J. S., Rudiger, S., Schonfeld, H. J., Schirra, C., Bujard, H. & Bukau, B. ( 1996; ). A cycle of binding and release of the DnaK, DnaJ and GrpE chaperones regulates activity of the Escherichia coli heat shock transcription factor sigma32. EMBO J 15, 607–617.
    [Google Scholar]
  12. Gaynor, E. C., Cawthraw, S., Manning, G., MacKichan, J. K., Falkow, S. & Newell, D. G. ( 2004; ). The genome-sequenced variant of Campylobacter jejuni NCTC 11168 and the original clonal clinical isolate differ markedly in colonization, gene expression, and virulence-associated phenotypes. J Bacteriol 186, 503–517.[CrossRef]
    [Google Scholar]
  13. Georgopoulos, C. ( 2006; ). Toothpicks, serendipity and the emergence of the Escherichia coli DnaK (Hsp70) and GroEL (Hsp60) chaperone machines. Genetics 174, 1699–1707.[CrossRef]
    [Google Scholar]
  14. Grandvalet, C., Servant, P. & Mazodier, P. ( 1997; ). Disruption of hspR, the repressor gene of the dnaK operon in Streptomyces albus G. Mol Microbiol 23, 77–84.[CrossRef]
    [Google Scholar]
  15. Grossman, A. D., Erickson, J. W. & Gross, C. A. ( 1984; ). The htpR gene product of E. coli is a sigma factor for heat-shock promoters. Cell 38, 383–390.[CrossRef]
    [Google Scholar]
  16. Gundogdu, O., Bentley, S. D., Holden, M. T., Parkhill, J., Dorrell, N. & Wren, B. W. ( 2007; ). Re-annotation and re-analysis of the Campylobacter jejuni NCTC11168 genome sequence. BMC Genomics 8, 162 [CrossRef]
    [Google Scholar]
  17. Hartl, F. U. ( 1996; ). Molecular chaperones in cellular protein folding. Nature 381, 571–579.[CrossRef]
    [Google Scholar]
  18. Hartl, F. U., Martin, J. & Neupert, W. ( 1992; ). Protein folding in the cell: the role of molecular chaperones Hsp70 and Hsp60. Annu Rev Biophys Biomol Struct 21, 293–322.[CrossRef]
    [Google Scholar]
  19. Hitomi, M., Nishimura, H., Tsujimoto, Y., Matsui, H. & Watanabe, K. ( 2003; ). Identification of a helix-turn-helix motif of Bacillus thermoglucosidasius HrcA essential for binding to the CIRCE element and thermostability of the HrcA–CIRCE complex, indicating a role as a thermosensor. J Bacteriol 185, 381–385.[CrossRef]
    [Google Scholar]
  20. Holmes, K., Mulholland, F., Pearson, B. M., Pin, C., McNicholl-Kennedy, J., Ketley, J. M. & Wells, J. M. ( 2005; ). Campylobacter jejuni gene expression in response to iron limitation and the role of Fur. Microbiology 151, 243–257.[CrossRef]
    [Google Scholar]
  21. Konkel, M. E., Kim, B. J., Klena, J. D., Young, C. R. & Ziprin, R. ( 1998; ). Characterization of the thermal stress response of Campylobacter jejuni. Infect Immun 66, 3666–3672.
    [Google Scholar]
  22. Laemmli, U. ( 1970; ). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685.[CrossRef]
    [Google Scholar]
  23. Lund, P. A. ( 2001; ). Microbial molecular chaperones. Adv Microb Physiol 44, 93–140.
    [Google Scholar]
  24. Mogk, A., Homuth, G., Scholz, C., Kim, L., Schmid, F. X. & Schumann, W. ( 1997; ). The GroE chaperonin machine is a major modulator of the CIRCE heat shock regulon of Bacillus subtilis. EMBO J 16, 4579–4590.[CrossRef]
    [Google Scholar]
  25. Mogk, A., Tomoyasu, T., Goloubinoff, P., Rüdiger, S., Röder, D., Langen, H. & Bukau, B. ( 1999; ). Identification of thermolabile Escherichia coli proteins: prevention and reversion of aggregation by DnaK and ClpB. EMBO J 18, 6934–6949.[CrossRef]
    [Google Scholar]
  26. Narberhaus, F. ( 1999; ). Negative regulation of bacterial heat shock genes. Mol Microbiol 31, 1–8.[CrossRef]
    [Google Scholar]
  27. Neuwald, A. F., Aravind, L., Spouge, J. L. & Koonin, E. V. ( 1999; ). AAA+: A class of chaperone-like ATPases associated with the assembly, operation, and disassembly of protein complexes. Genome Res 9, 27–43.
    [Google Scholar]
  28. Parkhill, J., Wren, B. W., Mungall, K., Ketley, J. M., Churcher, C., Basham, D., Chillingworth, T., Davies, R. M., Feltwell, T. & other authors ( 2000; ). The genome sequence of the food-borne pathogen Campylobacter jejuni reveals hypervariable sequences. Nature 403, 665–668.[CrossRef]
    [Google Scholar]
  29. Reischl, S., Wiegert, T. & Schumann, W. ( 2002; ). Isolation and analysis of mutant alleles of the Bacillus subtilis HrcA repressor with reduced dependency on GroE function. J Biol Chem 277, 32659–32667.[CrossRef]
    [Google Scholar]
  30. Richmond, C. S., Glasner, J. D., Mau, R., Jin, H. & Blattner, F. R. ( 1999; ). Genome-wide expression profiling in Escherichia coli K-12. Nucleic Acids Res 27, 3821–3835.[CrossRef]
    [Google Scholar]
  31. Roncarati, D., Danielli, A., Spohn, G., Delany, I. & Scarlato, V. ( 2007; ). Transcriptional regulation of stress response and motility functions in Helicobacter pylori is mediated by HspR and HrcA. J Bacteriol 189, 7234–7243.[CrossRef]
    [Google Scholar]
  32. Sambrook, J., Fritsch, E. F. & Maniatis, T. ( 1989; ). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  33. Squires, C. L., Pedersen, S., Ross, B. M. & Squires, C. ( 1991; ). ClpB is the Escherichia coli heat shock protein F84.1. J Bacteriol 173, 4254–4262.
    [Google Scholar]
  34. Stewart, G. R., Wernisch, L., Stabler, R., Mangan, J. A., Hinds, J., Laing, K. G., Young, D. B. & Butcher, P. D. ( 2002; ). Dissection of the heat-shock response in Mycobacterium tuberculosis using mutants and microarrays. Microbiology 148, 3129–3138.
    [Google Scholar]
  35. Stintzi, A. ( 2003; ). Gene expression profile of Campylobacter jejuni in response to growth temperature variation. J Bacteriol 185, 2009–2016.[CrossRef]
    [Google Scholar]
  36. Stintzi, A., Marlow, D., Palyada, K., Naikare, H., Panciera, R., Whitworth, L. & Clarke, C. ( 2005; ). Use of genome-wide expression profiling and mutagenesis to study the intestinal lifestyle of Campylobacter jejuni. Infect Immun 73, 1797–1810.[CrossRef]
    [Google Scholar]
  37. Suzuki, C. K., Rep, M., van Dijl, J. M., Suda, K., Grivell, L. A. & Schatz, G. ( 1997; ). ATP-dependent proteases that also chaperone protein biogenesis. Trends Biochem Sci 22, 118–123.[CrossRef]
    [Google Scholar]
  38. Thies, F. L., Hartung, H. P. & Giegerich, G. ( 1998; ). Cloning and expression of the Campylobacter jejuni lon gene detected by RNA arbitrarily primed PCR. FEMS Microbiol Lett 165, 329–334.[CrossRef]
    [Google Scholar]
  39. Thies, F. L., Karch, H., Hartung, H. P. & Giegerich, G. ( 1999a; ). The ClpB protein from Campylobacter jejuni: molecular characterization of the encoding gene and antigenicity of the recombinant protein. Gene 230, 61–67.[CrossRef]
    [Google Scholar]
  40. Thies, F. L., Karch, H., Hartung, H. P. & Giegerich, G. ( 1999b; ). Cloning and expression of the dnaK gene of Campylobacter jejuni and antigenicity of heat shock protein 70. Infect Immun 67, 1194–1200.
    [Google Scholar]
  41. Thies, F. L., Weishaupt, A., Karch, H., Hartung, H. P. & Giegerich, G. ( 1999c; ). Cloning, sequencing and molecular analysis of the Campylobacter jejuni groESL bicistronic operon. Microbiology 145, 89–98.[CrossRef]
    [Google Scholar]
  42. Tomoyasu, T., Ogura, T., Tatsuta, T. & Bukau, B. ( 1998; ). Levels of DnaK and DnaJ provide tight control of heat shock gene expression and protein repair in Escherichia coli. Mol Microbiol 30, 567–581.[CrossRef]
    [Google Scholar]
  43. Watanabe, K., Yamamoto, T. & Suzuki, Y. ( 2001; ). Renaturation of Bacillus thermoglucosidasius HrcA repressor by DNA and thermostability of the HrcA-DNA complex in vitro. J Bacteriol 183, 155–161.[CrossRef]
    [Google Scholar]
  44. Weibezahn, J., Tessarz, P., Schlieker, C., Zahn, R., Maglica, Z., Lee, S., Zentgraf, H., Weber-Ban, E. U., Dougan, D. A. & Tsai, F. T. F. ( 2004; ). Thermotolerance requires refolding of aggregated proteins by substrate translocation through the central pore of ClpB. Cell 119, 653–665.[CrossRef]
    [Google Scholar]
  45. Wu, Y. L., Lee, L. H., Rollins, D. M. & Ching, W. M. ( 1994; ). Heat shock- and alkaline pH-induced proteins of Campylobacter jejuni: characterization and immunological properties. Infect Immun 62, 4256–4260.
    [Google Scholar]
  46. Yura, T. & Nakahigashi, K. ( 1999; ). Regulation of the heat-shock response. Curr Opin Microbiol 2, 153–158.[CrossRef]
    [Google Scholar]
  47. Zuber, U. & Schumann, W. ( 1994; ). CIRCE, a novel heat shock element involved in regulation of heat shock operon dnaK of Bacillus subtilis. J Bacteriol 176, 1359–1363.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.031708-0
Loading
/content/journal/micro/10.1099/mic.0.031708-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error