1887

Abstract

The human pathogen has a classic heat shock response, showing induction of chaperones and proteases plus several unidentified proteins in response to a small increase in growth temperature. The genome contains two homologues to known heat shock response regulators, HrcA and HspR. Previous work has shown that HspR controls several heat-shock genes, but the regulon has not been defined. We have constructed single and double deletions of and and analysed gene expression using microarrays. Only a small number of genes are controlled by these two regulators, and the two regulons overlap. Strains mutated in , but not those mutated in , showed enhanced thermotolerance. Some genes previously identified as being downregulated in a strain lacking showed no change in expression in our experiments.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.031708-0
2010-01-01
2020-07-13
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/1/158.html?itemId=/content/journal/micro/10.1099/mic.0.031708-0&mimeType=html&fmt=ahah

References

  1. Andersen M. T., Brondsted L., Pearson B. M., Mulholland F., Parker M., Pin C., Wells J. M., Ingmer H.. 2005; Diverse roles for HspR in Campylobacter jejuni revealed by the proteome, transcriptome and phenotypic characterization of an hspR mutant. Microbiology151:905–915
    [Google Scholar]
  2. Benjamini Y., Hochberg Y.. 1995; Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Roy Stat Soc B57:289–300
    [Google Scholar]
  3. Bucca G., Ferina G., Puglia A. M., Smith C. P.. 1995; The dnaK operon of Streptomyces coelicolor encodes a novel heat-shock protein which binds to the promoter region of the operon. Mol Microbiol17:663–674
    [Google Scholar]
  4. Bucca G., Hindle Z., Smith C. P.. 1997; Regulation of the dnaK operon of Streptomyces coelicolor A3(2) is governed by HspR, an autoregulatory repressor protein. J Bacteriol179:5999–6004
    [Google Scholar]
  5. Bucca G., Brassington A. M., Schonfeld H. J., Smith C. P.. 2000; The HspR regulon of Streptomyces coelicolor: a role for the DnaK chaperone as a transcriptional co-repressor. Mol Microbiol38:1093–1103
    [Google Scholar]
  6. Constantinidou C., Hobman J. L., Griffiths L., Patel M. D., Penn C. W., Cole J. A., Overton T. W.. 2006; A reassessment of the FNR regulon and transcriptomic analysis of the effects of nitrate, nitrite, NarXL, and NarQP as Escherichia coli K12 adapts from aerobic to anaerobic growth. J Biol Chem281:4802–4815
    [Google Scholar]
  7. Dorrell N., Mangan J. A., Laing K. G., Hinds J., Linton D., Al-Ghusein H., Barrell B. G., Parkhill J., Stoker N. G.. other authors 2001; Whole genome comparison of Campylobacter jejuni human isolates using a low-cost microarray reveals extensive genetic diversity. Genome Res11:1706–1715
    [Google Scholar]
  8. Dougan D. A., Mogk A., Bukau B.. 2002; Protein folding and degradation in bacteria: to degrade or not to degrade? That is the question. Cell Mol Life Sci59:1607–1616
    [Google Scholar]
  9. El-Samad H., Kurata H., Doyle J. C., Gross C. A., Khammash M.. 2005; Surviving heat shock: control strategies for robustness and performance. Proc Natl Acad Sci U S A102:2736–2741
    [Google Scholar]
  10. Elvers K. T., Turner S. M., Wainwright L. M., Marsden G., Hinds J., Cole J. A., Poole R. K., Penn C. W., Park S. F.. 2005; NssR, a member of the Crp–Fnr superfamily from Campylobacter jejuni, regulates a nitrosative stress-responsive regulon that includes both a single-domain and a truncated haemoglobin. Mol Microbiol57:735–750
    [Google Scholar]
  11. Gamer J., Multhaup G., Tomoyasu T., McCarty J. S., Rudiger S., Schonfeld H. J., Schirra C., Bujard H., Bukau B.. 1996; A cycle of binding and release of the DnaK, DnaJ and GrpE chaperones regulates activity of the Escherichia coli heat shock transcription factor sigma32. EMBO J15:607–617
    [Google Scholar]
  12. Gaynor E. C., Cawthraw S., Manning G., MacKichan J. K., Falkow S., Newell D. G.. 2004; The genome-sequenced variant of Campylobacter jejuni NCTC 11168 and the original clonal clinical isolate differ markedly in colonization, gene expression, and virulence-associated phenotypes. J Bacteriol186:503–517
    [Google Scholar]
  13. Georgopoulos C.. 2006; Toothpicks, serendipity and the emergence of the Escherichia coli DnaK (Hsp70) and GroEL (Hsp60) chaperone machines. Genetics174:1699–1707
    [Google Scholar]
  14. Grandvalet C., Servant P., Mazodier P.. 1997; Disruption of hspR, the repressor gene of the dnaK operon in Streptomyces albus G. Mol Microbiol23:77–84
    [Google Scholar]
  15. Grossman A. D., Erickson J. W., Gross C. A.. 1984; The htpR gene product of E. coli is a sigma factor for heat-shock promoters. Cell38:383–390
    [Google Scholar]
  16. Gundogdu O., Bentley S. D., Holden M. T., Parkhill J., Dorrell N., Wren B. W.. 2007; Re-annotation and re-analysis of the Campylobacter jejuni NCTC11168 genome sequence. BMC Genomics8:162
    [Google Scholar]
  17. Hartl F. U.. 1996; Molecular chaperones in cellular protein folding. Nature381:571–579
    [Google Scholar]
  18. Hartl F. U., Martin J., Neupert W.. 1992; Protein folding in the cell: the role of molecular chaperones Hsp70 and Hsp60. Annu Rev Biophys Biomol Struct21:293–322
    [Google Scholar]
  19. Hitomi M., Nishimura H., Tsujimoto Y., Matsui H., Watanabe K.. 2003; Identification of a helix-turn-helix motif of Bacillus thermoglucosidasius HrcA essential for binding to the CIRCE element and thermostability of the HrcA–CIRCE complex, indicating a role as a thermosensor. J Bacteriol185:381–385
    [Google Scholar]
  20. Holmes K., Mulholland F., Pearson B. M., Pin C., McNicholl-Kennedy J., Ketley J. M., Wells J. M.. 2005; Campylobacter jejuni gene expression in response to iron limitation and the role of Fur. Microbiology151:243–257
    [Google Scholar]
  21. Konkel M. E., Kim B. J., Klena J. D., Young C. R., Ziprin R.. 1998; Characterization of the thermal stress response of Campylobacter jejuni. Infect Immun66:3666–3672
    [Google Scholar]
  22. Laemmli U.. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature227:680–685
    [Google Scholar]
  23. Lund P. A.. 2001; Microbial molecular chaperones. Adv Microb Physiol44:93–140
    [Google Scholar]
  24. Mogk A., Homuth G., Scholz C., Kim L., Schmid F. X., Schumann W.. 1997; The GroE chaperonin machine is a major modulator of the CIRCE heat shock regulon of Bacillus subtilis. EMBO J16:4579–4590
    [Google Scholar]
  25. Mogk A., Tomoyasu T., Goloubinoff P., Rüdiger S., Röder D., Langen H., Bukau B.. 1999; Identification of thermolabile Escherichia coli proteins: prevention and reversion of aggregation by DnaK and ClpB. EMBO J18:6934–6949
    [Google Scholar]
  26. Narberhaus F.. 1999; Negative regulation of bacterial heat shock genes. Mol Microbiol31:1–8
    [Google Scholar]
  27. Neuwald A. F., Aravind L., Spouge J. L., Koonin E. V.. 1999; AAA+: A class of chaperone-like ATPases associated with the assembly, operation, and disassembly of protein complexes. Genome Res9:27–43
    [Google Scholar]
  28. Parkhill J., Wren B. W., Mungall K., Ketley J. M., Churcher C., Basham D., Chillingworth T., Davies R. M., Feltwell T.. other authors 2000; The genome sequence of the food-borne pathogen Campylobacter jejuni reveals hypervariable sequences. Nature403:665–668
    [Google Scholar]
  29. Reischl S., Wiegert T., Schumann W.. 2002; Isolation and analysis of mutant alleles of the Bacillus subtilis HrcA repressor with reduced dependency on GroE function. J Biol Chem277:32659–32667
    [Google Scholar]
  30. Richmond C. S., Glasner J. D., Mau R., Jin H., Blattner F. R.. 1999; Genome-wide expression profiling in Escherichia coli K-12. Nucleic Acids Res27:3821–3835
    [Google Scholar]
  31. Roncarati D., Danielli A., Spohn G., Delany I., Scarlato V.. 2007; Transcriptional regulation of stress response and motility functions in Helicobacter pylori is mediated by HspR and HrcA. J Bacteriol189:7234–7243
    [Google Scholar]
  32. Sambrook J., Fritsch E. F., Maniatis T.. 1989; Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
  33. Squires C. L., Pedersen S., Ross B. M., Squires C.. 1991; ClpB is the Escherichia coli heat shock protein F84.1. J Bacteriol173:4254–4262
    [Google Scholar]
  34. Stewart G. R., Wernisch L., Stabler R., Mangan J. A., Hinds J., Laing K. G., Young D. B., Butcher P. D.. 2002; Dissection of the heat-shock response in Mycobacterium tuberculosis using mutants and microarrays. Microbiology148:3129–3138
    [Google Scholar]
  35. Stintzi A.. 2003; Gene expression profile of Campylobacter jejuni in response to growth temperature variation. J Bacteriol185:2009–2016
    [Google Scholar]
  36. Stintzi A., Marlow D., Palyada K., Naikare H., Panciera R., Whitworth L., Clarke C.. 2005; Use of genome-wide expression profiling and mutagenesis to study the intestinal lifestyle of Campylobacter jejuni. Infect Immun73:1797–1810
    [Google Scholar]
  37. Suzuki C. K., Rep M., van Dijl J. M., Suda K., Grivell L. A., Schatz G.. 1997; ATP-dependent proteases that also chaperone protein biogenesis. Trends Biochem Sci22:118–123
    [Google Scholar]
  38. Thies F. L., Hartung H. P., Giegerich G.. 1998; Cloning and expression of the Campylobacter jejuni lon gene detected by RNA arbitrarily primed PCR. FEMS Microbiol Lett165:329–334
    [Google Scholar]
  39. Thies F. L., Karch H., Hartung H. P., Giegerich G.. 1999a; The ClpB protein from Campylobacter jejuni: molecular characterization of the encoding gene and antigenicity of the recombinant protein. Gene230:61–67
    [Google Scholar]
  40. Thies F. L., Karch H., Hartung H. P., Giegerich G.. 1999b; Cloning and expression of the dnaK gene of Campylobacter jejuni and antigenicity of heat shock protein 70. Infect Immun67:1194–1200
    [Google Scholar]
  41. Thies F. L., Weishaupt A., Karch H., Hartung H. P., Giegerich G.. 1999c; Cloning, sequencing and molecular analysis of the Campylobacter jejuni groESL bicistronic operon. Microbiology145:89–98
    [Google Scholar]
  42. Tomoyasu T., Ogura T., Tatsuta T., Bukau B.. 1998; Levels of DnaK and DnaJ provide tight control of heat shock gene expression and protein repair in Escherichia coli. Mol Microbiol30:567–581
    [Google Scholar]
  43. Watanabe K., Yamamoto T., Suzuki Y.. 2001; Renaturation of Bacillus thermoglucosidasius HrcA repressor by DNA and thermostability of the HrcA-DNA complex in vitro. J Bacteriol183:155–161
    [Google Scholar]
  44. Weibezahn J., Tessarz P., Schlieker C., Zahn R., Maglica Z., Lee S., Zentgraf H., Weber-Ban E. U., Dougan D. A., Tsai F. T. F.. 2004; Thermotolerance requires refolding of aggregated proteins by substrate translocation through the central pore of ClpB. Cell119:653–665
    [Google Scholar]
  45. Wu Y. L., Lee L. H., Rollins D. M., Ching W. M.. 1994; Heat shock- and alkaline pH-induced proteins of Campylobacter jejuni: characterization and immunological properties. Infect Immun62:4256–4260
    [Google Scholar]
  46. Yura T., Nakahigashi K.. 1999; Regulation of the heat-shock response. Curr Opin Microbiol2:153–158
    [Google Scholar]
  47. Zuber U., Schumann W.. 1994; CIRCE, a novel heat shock element involved in regulation of heat shock operon dnaK of Bacillus subtilis. J Bacteriol176:1359–1363
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.031708-0
Loading
/content/journal/micro/10.1099/mic.0.031708-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error