1887

Abstract

serogroup B is a pathogen that can infect diverse sites within the human host. According to the genomic information and experimental observations, glucose can be completely catabolized through the Entner–Doudoroff pathway and the pentose phosphate pathway. The Embden–Meyerhof–Parnas pathway is not functional, because the gene for phosphofructokinase (PFK) is not present. The phylogenetic distribution of PFK indicates that in most obligate aerobic organisms, PFK is lacking. We conclude that this is because of the limited contribution of PFK to the energy supply in aerobically grown organisms in comparison with the energy generated through oxidative phosphorylation. Under anaerobic or microaerobic conditions, the available energy is limiting, and PFK provides an advantage, which explains the presence of PFK in many (facultatively) anaerobic organisms. In accordance with this, flux balance analysis predicted an increase of biomass yield as a result of PFK expression. However, analysis of a genetically engineered strain that expressed a heterologous PFK showed that the yield of biomass on substrate decreased in comparison with a -deficient control strain, which was associated mainly with an increase in CO production, whereas production of by-products was similar in the two strains. This might explain why the gene has not been obtained by horizontal gene transfer, since it is initially unfavourable for biomass yield. No large effects related to heterologous expression of were observed in the transcriptome. Although our results suggest that introduction of PFK does not contribute to a more efficient strain in terms of biomass yield, achievement of a robust, optimal metabolic network that enables a higher growth rate or a higher biomass yield might be possible after adaptive evolution of the strain, which remains to be investigated.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.031641-0
2010-02-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/2/530.html?itemId=/content/journal/micro/10.1099/mic.0.031641-0&mimeType=html&fmt=ahah

References

  1. Antignac A., Rousselle J. C., Namane A., Labigne A., Taha M. K., Boneca I. G. 2003; Detailed structural analysis of the peptidoglycan of the human pathogen Neisseria meningitidis. J Biol Chem 278:31521–31528
    [Google Scholar]
  2. Baart G. J., Zomer B., de Haan A., van der Pol L. A., Beuvery E. C., Tramper J., Martens D. E. 2007a; Modeling Neisseria meningitidis metabolism: from genome to metabolic fluxes. Genome Biol 8:R136
    [Google Scholar]
  3. Baart G. J. E., de Jong G., Philippi M., Riet K. V. T., van der Pol L. A., Beuvery E. C., Tramper J., Martens D. E. 2007b; Scale-up for bulk production of vaccine against meningococcal disease. Vaccine 25:6399–6408
    [Google Scholar]
  4. Baart G. J. E., Willemsen M., Khatami E., de Haan A., Zomer B., Beuvery E. C., Tramper J., Martens D. E. 2008; Modeling Neisseria meningitidis B metabolism at different specific growth rates. Biotechnol Bioeng 101:1022–1035
    [Google Scholar]
  5. Bapteste E., Moreira D., Philippe H. 2003; Rampant horizontal gene transfer and phospho-donor change in the evolution of the phosphofructokinase. Gene 318:185–191
    [Google Scholar]
  6. Bartolini E., Frigimelica E., Giovinazzi S., Galli G., Shaik Y., Genco C., Welsch J. A., Granoff D. M., Grandi G., Grifantini R. 2006; Role of FNR and FNR-regulated, sugar fermentation genes in Neisseria meningitidis infection. Mol Microbiol 60:963–972
    [Google Scholar]
  7. Bentley S. D., Vernikos G. S., Snyder L. A., Churcher C., Arrowsmith C., Chillingworth T., Cronin A., Davis P. H., Holroyd N. E. other authors 2007; Meningococcal genetic variation mechanisms viewed through comparative analysis of serogroup C strain FAM18. PLoS Genet 3:e23
    [Google Scholar]
  8. Blangy D., Buc H., Monod J. 1968; Kinetics of the allosteric interactions of phosphofructokinase from Escherichia coli. J Mol Biol 31:13–35
    [Google Scholar]
  9. Bos M. P., Tommassen J. 2005; Viability of a capsule- and lipopolysaccharide-deficient mutant of Neisseria meningitidis. Infect Immun 73:6194–6197
    [Google Scholar]
  10. Brauer M. J., Saldanha A. J., Dolinski K., Botstein D. 2005; Homeostatic adjustment and metabolic remodeling in glucose-limited yeast cultures. Mol Biol Cell 16:2503–2517
    [Google Scholar]
  11. Davidsen T., Tonjum T. 2006; Meningococcal genome dynamics. Nat Rev Microbiol 4:11–22
    [Google Scholar]
  12. Deutscher J., Francke C., Postma P. W. 2006; How phosphotransferase system-related protein phosphorylation regulates carbohydrate metabolism in bacteria. Microbiol Mol Biol Rev 70:939–1031
    [Google Scholar]
  13. Dorresteijn R. C., de Gooijer C. D., Tramper J., Beuvery E. C. 1994; A method for simultaneous determination of solubility and transfer coefficient of oxygen in aqueous media using off-gas mass spectrometry. Biotechnol Bioeng 43:149–154
    [Google Scholar]
  14. Edwards J. S., Ramakrishna R., Schilling C. H., Palsson B. O. 1999; Metabolic flux balance analysis. In Metabolic Engineering pp 13–57 Edited by Lee S. Y., Papoutsakis E. T. New York: Marcel Dekker;
    [Google Scholar]
  15. Edwards J. S., Ibarra R. U., Palsson B. O. 2001; In silico predictions of Escherichia coli metabolic capabilities are consistent with experimental data. Nat Biotechnol 19:125–130
    [Google Scholar]
  16. Elkins C., Thomas C. E., Seifert H. S., Sparling P. F. 1991; Species-specific uptake of DNA by gonococci is mediated by a 10-base-pair sequence. J Bacteriol 173:3911–3913
    [Google Scholar]
  17. Exley R. M., Shaw J., Mowe E., Sun Y. H., West N. P., Williamson M., Botto M., Smith H., Tang C. M. 2005; Available carbon source influences the resistance of Neisseria meningitidis against complement. J Exp Med 201:1637–1645
    [Google Scholar]
  18. Flores N., Flores S., Escalante A., de Anda R., Leal L., Malpica R., Georgellis D., Gosset G., Bolivar F. 2005; Adaptation for fast growth on glucose by differential expression of central carbon metabolism and gal regulon genes in an Escherichia coli strain lacking the phosphoenolpyruvate : carbohydrate phosphotransferase system. Metab Eng 7:70–87
    [Google Scholar]
  19. Fordyce A. M., Moore C. H., Pritchard G. G. 1982; Phosphofructokinase from Streptococcus lactis. Methods Enzymol 90:77–82
    [Google Scholar]
  20. Forster J., Gombert A. K., Nielsen J. 2002; A functional genomics approach using metabolomics and in silico pathway analysis. Biotechnol Bioeng 79:703–712
    [Google Scholar]
  21. Fraenkel D. G. 1996; Glycolysis. In Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology. pp 189–198 Edited by Neidhardt F. C., Curtiss R., Ingraham J. L., Brooks Low K., Magasanik B., Reznikoff W. S., Riley M., Schaechter M., Umbarger H. E. Washington DC: American Society for Microbiology;
  22. Fraenkel D. G., Horecker B. L. 1965; Fructose-1,6-diphosphatase and acid hexose phosphatase of Escherichia coli. J Bacteriol 90:837–842
    [Google Scholar]
  23. Girard M. P., Preziosi M. P., Aguado M. T., Kieny M. P. 2006; A review of vaccine research and development: meningococcal disease. Vaccine 24:4692–4700
    [Google Scholar]
  24. Guixe V., Babul J. 1985; Effect of ATP on phosphofructokinase-2 from Escherichia coli. A mutant enzyme altered in the allosteric site for MgATP. J Biol Chem 260:11001–11005
    [Google Scholar]
  25. Holten E. 1974; 6-Phosphogluconate dehydrogenase and enzymes of the Entner–Doudoroff pathway in Neisseria. Acta Pathol Microbiol Scand B Microbiol Immunol 82:207–213
    [Google Scholar]
  26. Holten E. 1975; Radiorespirometric studies in genus Neisseria. I. The catabolism of glucose. Acta Pathol Microbiol Scand [B] 83:353–366
    [Google Scholar]
  27. Hua Q., Joyce A. R., Palsson B. O., Fong S. S. 2007; Metabolic characterization of Escherichia coli strains adapted to growth on lactate. Appl Environ Microbiol 73:4639–4647
    [Google Scholar]
  28. Ito S., Fushinobu S., Yoshioka I., Koga S., Matsuzawa H., Wakagi T. 2001; Structural basis for the ADP-specificity of a novel glucokinase from a hyperthermophilic archaeon. Structure 9:205–214
    [Google Scholar]
  29. Jyssum K. 1962a; Dissimilation of C14 labelled glucose by Neisseria meningitidis 2. The incorporation of 1-C14 and 6-C14 into pyruvate. Acta Pathol Microbiol Immunol Scand [B] 55:335–341
    [Google Scholar]
  30. Jyssum K. 1962b; Dissimilation of C14 labelled glucose by Neisseria meningitidis 1. The formation of CO2 and acetate from glucose carbon. Acta Pathol Microbiol Immunol Scand [B] 55:319–324
    [Google Scholar]
  31. Jyssum K. 1962c; Dissimilation of C14 labelled glucose by Neisseria meningitidis 2. The incorporation of 1-C14 and 6-C14 into cellular components in short time experiments. Acta Pathol Microbiol Immunol Scand [B] 55:325–334
    [Google Scholar]
  32. Jyssum K., Borchgrevink B., Jyssum S. 1961; Glucose catabolism in Neisseria meningitidis. 1. Glucose oxidation and intermediate reactions of the Embden–Meyerhof pathway. Acta Pathol Microbiol Scand 53:71–83
    [Google Scholar]
  33. Kroll J. S., Wilks K. E., Farrant J. L., Langford P. R. 1998; Natural genetic exchange between Haemophilus and Neisseria: intergeneric transfer of chromosomal genes between major human pathogens. Proc Natl Acad Sci U S A 95:12381–12385
    [Google Scholar]
  34. Lange H. C., Heijnen J. J. 2001; Statistical reconciliation of the elemental and molecular biomass composition of Saccharomyces cerevisiae. Biotechnol Bioeng 75:334–344
    [Google Scholar]
  35. Lange H. C., Eman M., van Zuijlen G., Visser D., van Dam J. C., Frank J., de Mattos M. J., Heijnen J. J. 2001; Improved rapid sampling for in vivo kinetics of intracellular metabolites in Saccharomyces cerevisiae. Biotechnol Bioeng 75:406–415
    [Google Scholar]
  36. Liu J.-S., Vojinovic V., Patino R., Maskow T., von Stockar U. 2007; A comparison of various Gibbs energy dissipation correlations for predicting microbial growth yields. Thermochim Acta 458:38–46
    [Google Scholar]
  37. Muller M., Lee J. A., Gordon P., Gaasterland T., Sensen C. W. 2001; Presence of prokaryotic and eukaryotic species in all subgroups of the PPi-dependent group II phosphofructokinase protein family. J Bacteriol 183:6714–6716
    [Google Scholar]
  38. Nassif X., Pujol C., Morand P., Eugene E. 1999; Interactions of pathogenic Neisseria with host cells. Is it possible to assemble the puzzle?. Mol Microbiol 32:1124–1132
    [Google Scholar]
  39. Neidhardt F. C., Umbarger H. E. 1996; Chemical composition of Escherichia coli. In Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology. pp 13–16 Edited by Neidhardt F. C., Curtiss R., Ingraham J. L., Brooks Low K., Magasanik B., Reznikoff W. S., Riley M., Schaechter M., Umbarger H. E. Washington DC: American Society for Microbiology;
  40. Ogawa T., Mori H., Tomita M., Yoshino M. 2007; Inhibitory effect of phosphoenolpyruvate on glycolytic enzymes in Escherichia coli. Res Microbiol 158:159–163
    [Google Scholar]
  41. Omelchenko M. V., Makarova K. S., Wolf Y. I., Rogozin I. B., Koonin E. V. 2003; Evolution of mosaic operons by horizontal gene transfer and gene displacement in situ. Genome Biol 4:R55
    [Google Scholar]
  42. Parkhill J., Achtman M., James K. D., Bentley S. D., Churcher C., Klee S. R., Morelli G., Basham D., Brown D. other authors 2000; Complete DNA sequence of a serogroup A strain of Neisseria meningitidis Z2491. Nature 404:502–506
    [Google Scholar]
  43. Peng J., Yang L., Yang F., Yang J., Yan Y., Nie H., Zhang X., Xiong Z., Jiang Y. other authors 2008; Characterization of ST-4821 complex, a unique Neisseria meningitidis clone. Genomics 91:78–87
    [Google Scholar]
  44. Postma E., Verduyn C., Scheffers W. A., Van Dijken J. P. 1989; Enzymic analysis of the Crabtree effect in glucose-limited chemostat cultures of Saccharomyces cerevisiae. Appl Environ Microbiol 55:468–477
    [Google Scholar]
  45. Postma P. W., Lengeler J. W., Jacobson G. R. 1993; Phosphoenolpyruvate : carbohydrate phosphotransferase systems of bacteria. Microbiol Rev 57:543–594
    [Google Scholar]
  46. Rahman M. M., Kolli V. S., Kahler C. M., Shih G., Stephens D. S., Carlson R. W. 2000; The membrane phospholipids of Neisseria meningitidis and Neisseria gonorrhoeae as characterized by fast atom bombardment mass spectrometry. Microbiology 146:1901–1911
    [Google Scholar]
  47. Rosenstein N. E., Perkins B. A., Stephens D. S., Popovic T., Hughes J. M. 2001; Meningococcal disease. N Engl J Med 344:1378–1388
    [Google Scholar]
  48. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
  49. Schroeder A., Mueller O., Stocker S., Salowsky R., Leiber M., Gassmann M., Lightfoot S., Menzel W., Granzow M., Ragg T. 2006; The RIN: an RNA integrity number for assigning integrity values to RNA measurements. BMC Mol Biol 7:3
    [Google Scholar]
  50. Schuetz R., Kuepfer L., Sauer U. 2007; Systematic evaluation of objective functions for predicting intracellular fluxes in Escherichia coli. Mol Syst Biol 3:119
    [Google Scholar]
  51. Seifert H. S., Ajioka R. S., Marchal C., Sparling P. F., So M. 1988; DNA transformation leads to pilin antigenic variation in Neisseria gonorrhoeae. Nature 336:392–395
    [Google Scholar]
  52. Siebers B., Klenk H. P., Hensel R. 1998; PPi-dependent phosphofructokinase from Thermoproteus tenax, an archaeal descendant of an ancient line in phosphofructokinase evolution. J Bacteriol 180:2137–2143
    [Google Scholar]
  53. Spratt B. G., Bowler L. D., Zhang Q. Y., Zhou J., Smith J. M. 1992; Role of interspecies transfer of chromosomal genes in the evolution of penicillin resistance in pathogenic and commensal Neisseria species. J Mol Evol 34:115–125
    [Google Scholar]
  54. Stephens D. S., Hoffman L. H., McGee Z. A. 1983; Interaction of Neisseria meningitidis with human nasopharyngeal mucosa: attachment and entry into columnar epithelial cells. J Infect Dis 148:369–376
    [Google Scholar]
  55. Tettelin H., Saunders N. J., Heidelberg J., Jeffries A. C., Nelson K. E., Eisen J. A., Ketchum K. A., Hood D. W., Peden J. F. other authors 2000; Complete genome sequence of Neisseria meningitidis serogroup B strain MC58. Science 287:1809–1815
    [Google Scholar]
  56. Trotter C. L., Ramsay M. E. 2007; Vaccination against meningococcal disease in Europe: review and recommendations for the use of conjugate vaccines. FEMS Microbiol Rev 31:101–107
    [Google Scholar]
  57. Uyeda K., Luby L. J. 1974; Studies on the effect of fructose diphosphatase on phosphofructokinase. J Biol Chem 249:4562–4570
    [Google Scholar]
  58. Vallino J. J., Stephanopoulos G. 1990; Flux determination in cellular bioreaction networks: applications to lysine fermentations. In Frontiers in Bioprocessing pp 205–219 Edited by Sikdar S. K., Bier M., Todd P. Boca Raton, FL: CRC Press;
    [Google Scholar]
  59. van der Heijden R. T. J. M., Romein B., Heijnen J. J., Hellinga C., Luyben K. C. A. M. 1994; Linear constraint relations in biochemical reaction systems: II. Diagnosis and estimation of gross errors. Biotechnol Bioeng 43:11–20
    [Google Scholar]
  60. van der Ley P., van Alphen L. 2001; Construction of porA mutants. In Meningococcal Vaccines pp 145–154 Totowa, NJ: Humana Press;
    [Google Scholar]
  61. van der Ley P., van der Biezen J., Hohenstein P., Peeters C., Poolman J. T. 1993; Use of transformation to construct antigenic hybrids of the class 1 outer membrane protein in Neisseria meningitidis. Infect Immun 61:4217–4224
    [Google Scholar]
  62. van der Ley P., van der Biezen J., Poolman J. T. 1995; Construction of Neisseria meningitidis strains carrying multiple chromosomal copies of the porA gene for use in the production of a multivalent outer membrane vesicle vaccine. Vaccine 13:401–407
    [Google Scholar]
  63. van Gulik W. M., Heijnen J. J. 1995; A metabolic network stoichiometry analysis of microbial growth and product formation. Biotechnol Bioeng 48:681–698
    [Google Scholar]
  64. Verhees C. H., Tuininga J. E., Kengen S. W., Stams A. J., van der Oost J., de Vos W. M. 2001; ADP-dependent phosphofructokinases in mesophilic and thermophilic methanogenic archaea. J Bacteriol 183:7145–7153
    [Google Scholar]
  65. von Mering C., Jensen L. J., Snel B., Hooper S. D., Krupp M., Foglierini M., Jouffre N., Huynen M. A., Bork P. 2005; STRING: known and predicted protein–protein associations, integrated and transferred across organisms. Nucleic Acids Res 33:D433–D437
    [Google Scholar]
  66. von Stockar U., Maskow T., Liu J., Marison I. W., Patino R. 2006; Thermodynamics of microbial growth and metabolism: an analysis of the current situation. J Biotechnol 121:517–533
    [Google Scholar]
  67. Vulic M., Kolter R. 2001; Evolutionary cheating in Escherichia coli stationary phase cultures. Genetics 158:519–526
    [Google Scholar]
  68. Zhou J., Spratt B. G. 1992; Sequence diversity within the argF, fbp and recA genes of natural isolates of Neisseria meningitidis: interspecies recombination within the argF gene. Mol Microbiol 6:2135–2146
    [Google Scholar]
  69. Zimmer S. M., Stephens D. S. 2006; Serogroup B meningococcal vaccines. Curr Opin Investig Drugs 7:733–739
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.031641-0
Loading
/content/journal/micro/10.1099/mic.0.031641-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF

Supplementary material 3

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error