1887

Abstract

produces a homologue of clostripain (Clo), the arginine-specific endopeptidase of . To determine the biochemical and biological properties of the homologue (Clp), it was purified from the culture supernatant of a recombinant strain by cation-exchange chromatography and ultrafiltration. Analysis by SDS-PAGE, N-terminal amino acid sequencing and TOF mass spectrometry revealed that Clp consists of two polypeptides comprising heavy (38 kDa) and light (16 kDa or 15 kDa) chains, and that the two light chains differ in the N-terminal cleavage site. This difference in the light chain did not affect the enzymic activity toward -benzoyl--arginine -nitroanilide (Bz--arginine pNA), as demonstrated by assaying culture supernatants differing in the relative ratio of the two light chains. Although the purified Clp preferentially degraded Bz--arginine pNA rather than Bz--lysine pNA, it degraded the latter more efficiently than did Clo. Clp showed 2.3-fold higher caseinolytic activity than Clo, as expected from the difference in substrate specificity. Clp caused an increase in vascular permeability when injected intradermally into mice, implying a possible role of Clp in the pathogenesis of clostridial myonecrosis.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.031609-0
2010-02-01
2024-12-06
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/2/561.html?itemId=/content/journal/micro/10.1099/mic.0.031609-0&mimeType=html&fmt=ahah

References

  1. Barrett A. J., Rawlings N. D. 2001; Evolutionary lines of cysteine peptidases. Biol Chem 382:727–733
    [Google Scholar]
  2. Bryant A. E., Bayer C. R., Aldape M. J., Wallace R. J., Titball R. W., Stevens D. L. 2006; Clostridium perfringens phospholipase C-induced platelet/leukocyte interactions impede neutrophil diapedesis. J Med Microbiol 55:495–504
    [Google Scholar]
  3. Chen J. M., Rawlings N. D., Stevens R. A., Barrett A. J. 1998; Identification of the active site of legumain links it to caspases, clostripain and gingipains in a new clan of cysteine endopeptidases. FEBS Lett 441:361–365
    [Google Scholar]
  4. Chiang-Ni C., Wu J. J. 2008; Effects of streptococcal pyrogenic exotoxin B on pathogenesis of Streptococcus pyogenes. J Formos Med Assoc 107:677–685
    [Google Scholar]
  5. Chohnan S., Shiraki K., Yokota K., Ohshima M., Kuroiwa N., Ahmed K., Masaki T., Sakiyama F. 2004; A second lysine-specific serine protease from Lysobacter sp. strain IB-9374. J Bacteriol 186:5093–5100
    [Google Scholar]
  6. Dargatz H., Diefenthal T., Witte V., Reipen G., von Wettstein D. 1993; The heterodimeric protease clostripain from Clostridium histolyticum is encoded by a single gene. Mol Gen Genet 240:140–145
    [Google Scholar]
  7. De A., Varaiya A., Mathur M., Bhesania A. 2003; Bacteriological studies of gas gangrene and related infections. Indian J Med Microbiol 21:202–204
    [Google Scholar]
  8. Edelmann M. J., Kessler B. M. 2008; Ubiquitin and ubiquitin-like specific proteases targeted by infectious pathogens: emerging patterns and molecular principles. Biochim Biophys Acta 1782:809–816
    [Google Scholar]
  9. Günther R., Stein A., Bordusa F. 2000; Investigations on the enzyme specificity of clostripain: a new efficient biocatalyst for the synthesis of peptide isosteres. J Org Chem 65:1672–1679
    [Google Scholar]
  10. Guzik K., Potempa J. 2008; Friendly fire against neutrophils: proteolytic enzymes confuse the recognition of apoptotic cells by macrophages. Biochimie 90:405–415
    [Google Scholar]
  11. Guzik K., Bzowska M., Smagur J., Krupa O., Sieprawska M., Travis J., Potempa J. 2007; A new insight into phagocytosis of apoptotic cells: proteolytic enzymes divert the recognition and clearance of polymorphonuclear leukocytes by macrophages. Cell Death Differ 14:171–182
    [Google Scholar]
  12. Jin F., Matsushita O., Katayama S., Jin S., Matsushita C., Minami J., Okabe A. 1996; Purification, characterization, and primary structure of Clostridium perfringens lambda-toxin, a thermolysin-like metalloprotease. Infect Immun 64:230–237
    [Google Scholar]
  13. Jóźwiak J., Komar A., Jankowska E., Martirosian G. 2005; Determination of the cytotoxic effect of Clostridium histolyticum culture supernatant on HeLa cells in the presence of protease inhibitors. FEMS Immunol Med Microbiol 45:137–142
    [Google Scholar]
  14. Kaji M., Matsushita O., Tamai E., Miyata S., Taniguchi Y., Shimamoto S., Katayama S., Morita S., Okabe A. 2003; A novel type of DNA curvature present in a Clostridium perfringens ferredoxin gene: characterization and role in gene expression. Microbiology 149:3083–3091
    [Google Scholar]
  15. Kim C. K., Lee S. Y., Kwon O. J., Lee S. M., Nah S. Y., Jeong S. M. 2007; Secretory expression of active clostripain in Escherichia coli. J Biotechnol 131:346–352
    [Google Scholar]
  16. Labrou N. E., Rigden D. J. 2004; The structure-function relationship in the clostripain family of peptidases. Eur J Biochem 271:983–992
    [Google Scholar]
  17. Liu D., Sun H., Zhang L., Li S., Qin Z. 2007; High-level expression of milk-derived antihypertensive peptide in Escherichia coli and its bioactivity. J Agric Food Chem 55:5109–5112
    [Google Scholar]
  18. Matsushita O., Yoshihara K., Katayama S., Minami J., Okabe A. 1994; Purification and characterization of Clostridium perfringens 120-kilodalton collagenase and nucleotide sequence of the corresponding gene. J Bacteriol 176:149–156
    [Google Scholar]
  19. Matsushita O., Jung C. M., Minami J., Katayama S., Nishi N., Okabe A. 1998; A study of the collagen-binding domain of a 116-kDa Clostridium histolyticum collagenase. J Biol Chem 273:3643–3648
    [Google Scholar]
  20. Mitchell W. M., Harrington W. F. 1970; [45] Clostripain. Methods Enzymol 19:635–642
    [Google Scholar]
  21. O'Brien-Simpson N. M., Pathirana R. D., Walker G. D., Reynolds E. C. 2009; Porphyromonas gingivalis RgpA-Kgp proteinase-adhesin complexes penetrate gingival tissue and induce proinflammatory cytokines or apoptosis in a concentration-dependent manner. Infect Immun 77:1246–1261
    [Google Scholar]
  22. Park C. J., Lee J. H., Hong S. S., Lee H. S., Kim S. C. 1998; High-level expression of the angiotensin-converting-enzyme-inhibiting peptide, YG-1, as tandem multimers in Escherichia coli. Appl Microbiol Biotechnol 50:71–76
    [Google Scholar]
  23. Potempa J., Mikolajczyk-Pawlinska J., Brassell D., Nelson D., Thøgersen I. B., Enghild J. J., Travis J. 1998; Comparative properties of two cysteine proteinases (gingipains R), the products of two related but individual genes of Porphyromonas gingivalis. J Biol Chem 273:21648–21657
    [Google Scholar]
  24. Potempa J., Banbula A., Travis J. 2000; Role of bacterial proteinases in matrix destruction and modulation of host responses. Periodontol 2000; 24:153–192
    [Google Scholar]
  25. Sheets S. M., Robles-Price A. G., McKenzie R. M., Casiano C. A., Fletcher H. M. 2008; Gingipain-dependent interactions with the host are important for survival of Porphyromonas gingivalis. Front Biosci 13:3215–3238
    [Google Scholar]
  26. Shimizu T., Shima K., Yoshino K., Yonezawa K., Shimizu T., Hayashi H. 2002a; Proteome and transcriptome analysis of the virulence genes regulated by the VirR/VirS system in Clostridium perfringens. J Bacteriol 184:2587–2594
    [Google Scholar]
  27. Shimizu T., Ohtani K., Hirakawa H., Ohshima K., Yamashita A., Shiba T., Ogasawara N., Hattori M., Kuhara S., Hayashi H. 2002b; Complete genome sequence of Clostridium perfringens, an anaerobic flesh-eater. Proc Natl Acad Sci U S A 99:996–1001
    [Google Scholar]
  28. Takamizawa A., Miyata S., Matsushita O., Kaji M., Taniguchi Y., Tamai E., Shimamoto S., Okabe A. 2004; High-level expression of clostridial sialidase using a ferredoxin gene promoter-based plasmid. Protein Expr Purif 36:70–75
    [Google Scholar]
  29. Tam V., O'Brien-Simpson N. M., Chen Y. Y., Sanderson C. J., Kinnear B., Reynolds E. C. 2009; The RgpA-Kgp proteinase-adhesin complexes of Porphyromonas gingivalis inactivate the Th2 cytokines interleukin-4 and interleukin-5. Infect Immun 77:1451–1458
    [Google Scholar]
  30. Tamai E., Miyata S., Tanaka H., Nariya H., Suzuki M., Matsushita O., Hatano N., Okabe A. 2008; High-level expression of his-tagged clostridial collagenase in Clostridium perfringens. Appl Microbiol Biotechnol 80:627–635
    [Google Scholar]
  31. Tanaka H., Tamai E., Miyata S., Taniguchi Y., Nariya H., Hatano N., Houchi H., Okabe A. 2008; Construction and characterization of a clostripain-like protease-deficient mutant of Clostridium perfringens as a strain for clostridial gene expression. Appl Microbiol Biotechnol 77:1063–1071
    [Google Scholar]
  32. Ullmann D., Bordusa F. 2004; Clostripain. In Handbook of Proteolytic Enzymes, 2nd edn. pp 1317–1319 Edited by Barrett A. J., Rawlings N. D., Woessner J. F. London: Elsevier Academic Press;
    [Google Scholar]
  33. Witte V., Wolf N., Diefenthal T., Reipen G., Dargatz H. 1994; Heterologous expression of the clostripain gene from Clostridium histolyticum in Escherichia coli and Bacillus subtilis: maturation of the clostripain precursor is coupled with self-activation. Microbiology 140:1175–1182
    [Google Scholar]
  34. Witte V., Wolf N., Dargatz H. 1996; Clostripain linker deletion variants yield active enzyme in Escherichia coli: a possible function of the linker peptide as intramolecular inhibitor of clostripain automaturation. Curr Microbiol 33:281–286
    [Google Scholar]
  35. Yoo B., Kirshenbaum K. 2005; Protease-mediated ligation of abiotic oligomers. J Am Chem Soc 127:17132–17133
    [Google Scholar]
/content/journal/micro/10.1099/mic.0.031609-0
Loading
/content/journal/micro/10.1099/mic.0.031609-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error