1887

Abstract

Despite the increasing popularity of multilocus sequence typing (MLST), the most appropriate method for characterizing bacterial variation and facilitating epidemiological investigations remains a matter of debate. Here, we propose that different typing schemes should be compared on the basis of their power to infer clonal relationships and investigate the utility of sequence data for genealogical reconstruction by exploiting new statistical tools and data from 20 housekeeping loci for 93 isolates of the bacterial pathogen . Our analysis demonstrated that all but one of the hyperinvasive isolates established by multilocus enzyme electrophoresis and MLST were grouped into one of six genealogical lineages, each of which contained substantial variation. Due to the confounding effect of recombination, evolutionary relationships among these lineages remained unclear, even using 20 loci. Analyses of the seven loci in the standard MLST scheme using the same methods reproduced this classification, but were unable to support finer inferences concerning the relationships between the members within each complex.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.031534-0
2009-10-01
2020-01-24
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/10/3176.html?itemId=/content/journal/micro/10.1099/mic.0.031534-0&mimeType=html&fmt=ahah

References

  1. Achtman, M. ( 1994; ). Clonal spread of serogroup A meningococci. A paradigm for the analysis of microevolution in bacteria. Mol Microbiol 11, 15–22.[CrossRef]
    [Google Scholar]
  2. Achtman, M. ( 1996; ). A surfeit of YATMs? J Clin Microbiol 34, 1870
    [Google Scholar]
  3. Bentley, S. D., Vernikos, G. S., Snyder, L. A., Churcher, C., Arrowsmith, C., Chillingworth, T., Cronin, A., Davis, P. H., Holroyd, N. E. & other authors ( 2007; ). Meningococcal genetic variation mechanisms viewed through comparative analysis of serogroup C strain FAM18. PLoS Genet 3, e23 [CrossRef]
    [Google Scholar]
  4. Bille, E., Zahar, J. R., Perrin, A., Morelle, S., Kriz, P., Jolley, K. A., Maiden, M. C., Dervin, C., Nassif, X. & other authors ( 2005; ). A chromosomally integrated bacteriophage in invasive meningococci. J Exp Med 201, 1905–1913.[CrossRef]
    [Google Scholar]
  5. Bille, E., Ure, R., Gray, S. J., Kaczmarski, E. B., McCarthy, N. D., Nassif, X., Maiden, M. C. & Tinsley, C. R. ( 2008; ). Association of a bacteriophage with meningococcal disease in young adults. PLoS One 3, e3885 [CrossRef]
    [Google Scholar]
  6. Brooks, S. P. & Gelman, A. ( 1998; ). General methods for monitoring convergence of iterative simulations. J Comput Graph Statist 7, 434–455.
    [Google Scholar]
  7. Buckee, C. O., Jolley, K., Recker, M., Penman, B., Kriz, P., Gupta, S. & Maiden, M. C. ( 2008; ). Role of selection in the emergence of lineages and the evolution of virulence in Neisseria meningitidis. Proc Natl Acad Sci U S A 105, 15082–15087.[CrossRef]
    [Google Scholar]
  8. Bygraves, J. A., Urwin, R., Fox, A. J., Gray, S. J., Russell, J. E., Feavers, I. M. & Maiden, M. C. J. ( 1999; ). Population genetic and evolutionary approaches to the analysis of Neisseria meningitidis isolates belonging to the ET-5 complex. J Bacteriol 181, 5551–5556.
    [Google Scholar]
  9. Callaghan, M. J., Jolley, K. A. & Maiden, M. C. ( 2006; ). Opacity-associated adhesin repertoire in hyperinvasive Neisseria meningitidis. Infect Immun 74, 5085–5094.[CrossRef]
    [Google Scholar]
  10. Caugant, D. A. ( 2008; ). Genetics and evolution of Neisseria meningitidis: importance for the epidemiology of meningococcal disease. Infect Genet Evol 8, 558–565.[CrossRef]
    [Google Scholar]
  11. Caugant, D. A. & Maiden, M. C. ( 2009; ). Meningococcal carriage and disease – population biology and evolution. Vaccine 27 (Suppl. 2), B64–B70.[CrossRef]
    [Google Scholar]
  12. Caugant, D. A., Mocca, L. F., Frasch, C. E., Frøholm, L. O., Zollinger, W. D. & Selander, R. K. ( 1987; ). Genetic structure of Neisseria meningitidis populations in relation to serogroup, serotype, and outer membrane protein pattern. J Bacteriol 169, 2781–2792.
    [Google Scholar]
  13. Didelot, X. & Falush, D. ( 2007; ). Inference of bacterial microevolution using multilocus sequence data. Genetics 175, 1251–1266.
    [Google Scholar]
  14. Didelot, X., Barker, M., Falush, D. & Priest, F. G. ( 2009; ). Evolution of pathogenicity in the Bacillus cereus group. Syst Appl Microbiol 32, 81–90.[CrossRef]
    [Google Scholar]
  15. Elias, J., Harmsen, D., Claus, H., Hellenbrand, W., Frosch, M. & Vogel, U. ( 2006; ). Spatiotemporal analysis of invasive meningococcal disease, Germany. Emerg Infect Dis 12, 1689–1695.[CrossRef]
    [Google Scholar]
  16. Falush, D. & Bowden, R. ( 2006; ). Genome-wide association mapping in bacteria? Trends Microbiol 14, 353–355.[CrossRef]
    [Google Scholar]
  17. Feavers, I. M., Gray, S. J., Urwin, R., Russell, J. E., Bygraves, J. A., Kaczmarski, E. B. & Maiden, M. C. J. ( 1999; ). Multilocus sequence typing and antigen gene sequencing in the investigation of a meningococcal disease outbreak. J Clin Microbiol 37, 3883–3887.
    [Google Scholar]
  18. Feil, E. J., Maiden, M. C. J., Achtman, M. & Spratt, B. G. ( 1999; ). The relative contributions of recombination and mutation to the divergence of clones of Neisseria meningitidis. Mol Biol Evol 16, 1496–1502.[CrossRef]
    [Google Scholar]
  19. Feil, E. J., Holmes, E. C., Bessen, D. E., Chan, M. S., Day, N. P., Enright, M. C., Goldstein, R., Hood, D. W., Kalia, A. & other authors ( 2001; ). Recombination within natural populations of pathogenic bacteria: short-term empirical estimates and long-term phylogenetic consequences. Proc Natl Acad Sci U S A 98, 182–187.[CrossRef]
    [Google Scholar]
  20. Fiala, K. L. & Sokal, R. R. ( 1985; ). Factors determining the accuracy of cladogram estimation – evaluation using computer-simulation. Evolution 39, 609–622.[CrossRef]
    [Google Scholar]
  21. Fraser, C., Hanage, W. P. & Spratt, B. G. ( 2005; ). Neutral microepidemic evolution of bacterial pathogens. Proc Natl Acad Sci U S A 102, 1968–1973.[CrossRef]
    [Google Scholar]
  22. Gelman, A. ( 1996; ). Inference and monitoring convergence. In Markov Chain Monte Carlo in Practice. Edited by W. R. Gilks, S. Richardson & D. Spiegelhalter. Boca Raton, FL: Chapman & Hall.
  23. Gelman, A. & Rubin, D. B. ( 1992; ). Inference from iterative simulation using mulitple sequences. Stat Sci 7, 457–472.[CrossRef]
    [Google Scholar]
  24. Guttman, D. S. ( 1997; ). Recombination and clonality in natural populations of Escherichia coli. Trends Ecol Evol 12, 16–22.
    [Google Scholar]
  25. Guttman, D. S. & Dykhuizen, D. E. ( 1994; ). Clonal divergence in Escherichia coli as a result of recombination, not mutation. Science 266, 1380–1383.[CrossRef]
    [Google Scholar]
  26. Harrison, O. B., Evans, N. J., Blair, J. M., Grimes, H. S., Tinsley, C. R., Nassif, X., Kriz, P., Ure, R., Gray, S. J. & other authors ( 2009; ). Epidemiological evidence for the role of the hemoglobin receptor, HmbR, in meningococcal virulence. J Infect Dis 200, 94–98.[CrossRef]
    [Google Scholar]
  27. Holmes, E. C., Urwin, R. & Maiden, M. C. J. ( 1999; ). The influence of recombination on the population structure and evolution of the human pathogen Neisseria meningitidis. Mol Biol Evol 16, 741–749.[CrossRef]
    [Google Scholar]
  28. Hotopp, J. C., Grifantini, R., Kumar, N., Tzeng, Y. L., Fouts, D., Frigimelica, E., Draghi, M., Giuliani, M. M., Rappuoli, R. & other authors ( 2006; ). Comparative genomics of Neisseria meningitidis: core genome, islands of horizontal transfer and pathogen-specific genes. Microbiology 152, 3733–3749.[CrossRef]
    [Google Scholar]
  29. Jodar, L., Feavers, I. M., Salisbury, D. & Granoff, D. M. ( 2002; ). Development of vaccines against meningococcal disease. Lancet 359, 1499–1508.[CrossRef]
    [Google Scholar]
  30. Jolley, K. A., Kalmusova, J., Feil, E. J., Gupta, S., Musilek, M., Kriz, P. & Maiden, M. C. ( 2000; ). Carried meningococci in the Czech Republic: a diverse recombining population. J Clin Microbiol 38, 4492–4498.
    [Google Scholar]
  31. Jolley, K. A., Chan, M. S. & Maiden, M. C. ( 2004; ). mlstdbNet – distributed multi-locus sequence typing (MLST) databases. BMC Bioinformatics 5, 86 [CrossRef]
    [Google Scholar]
  32. Jolley, K. A., Wilson, D. J., Kriz, P., McVean, G. & Maiden, M. C. ( 2005; ). The influence of mutation, recombination, population history, and selection on patterns of genetic diversity in Neisseria meningitidis. Mol Biol Evol 22, 562–569.
    [Google Scholar]
  33. Jolley, K. A., Brehony, C. & Maiden, M. C. ( 2007; ). Molecular typing of meningococci: recommendations for target choice and nomenclature. FEMS Microbiol Rev 31, 89–96.[CrossRef]
    [Google Scholar]
  34. Jukes, T. H. & Cantor, C. R. ( 1969; ). Evolution of protein molecules. In Mammalian Protein Metabolism, pp. 21–132. Edited by H. N. Munro. New York: Academic Press.
  35. Kingman, J. F. ( 1982a; ). The coalescent. Stochastic Process Appl 13, 235–248.[CrossRef]
    [Google Scholar]
  36. Kingman, J. F. C. ( 1982b; ). On the genealogy of large populations. J Appl Probab 19, 27–43.[CrossRef]
    [Google Scholar]
  37. Kristiansen, B.-E., Radstrom, P., Jenkins, A., Ask, E., Facinelli, B. & Sköld, O. ( 1990; ). Cloning and characteriztion of a DNA fragment that confers sulfonamide resistance in a serogroup B, serotype 15 strain of Neisseria meningitidis. Antimicrob Agents Chemother 34, 2277–2279.[CrossRef]
    [Google Scholar]
  38. Levin, B. R. ( 1981; ). Periodic selection, infectious gene exchange and the genetic structure of E. coli populations. Genetics 99, 1–23.
    [Google Scholar]
  39. Linz, B., Schenker, M., Zhu, P. & Achtman, M. ( 2000; ). Frequent interspecific genetic exchange between commensal Neisseriae and Neisseria meningitidis. Mol Microbiol 36, 1049–1058.[CrossRef]
    [Google Scholar]
  40. Maiden, M. C. ( 2006; ). Multilocus sequence typing of bacteria. Annu Rev Microbiol 60, 561–588.[CrossRef]
    [Google Scholar]
  41. Maiden, M. C. ( 2008; ). Population genomics: diversity and virulence in the Neisseria. Curr Opin Microbiol 11, 467–471.[CrossRef]
    [Google Scholar]
  42. Maiden, M. C. J. & Spratt, B. G. ( 1999; ). Meningococcal conjugate vaccines: new opportunities and new challenges. Lancet 354, 615–616.[CrossRef]
    [Google Scholar]
  43. Maiden, M. C. J., Bygraves, J. A., Feil, E., Morelli, G., Russell, J. E., Urwin, R., Zhang, Q., Zhou, J., Zurth, K. & other authors ( 1998; ). Multilocus sequence typing: a portable approach to the identification of clones within populations of pathogenic microorganisms. Proc Natl Acad Sci U S A 95, 3140–3145.[CrossRef]
    [Google Scholar]
  44. Milkman, R. & Bridges, M. M. ( 1990; ). Molecular evolution of the Escherichia coli chromosome. III. Clonal frames. Genetics 126, 505–517.
    [Google Scholar]
  45. Musser, J. M. ( 1996; ). Molecular population genetic analysis of emerged bacterial pathogens: selected insights. Emerg Infect Dis 2, 1–17.[CrossRef]
    [Google Scholar]
  46. Roumagnac, P., Weill, F. X., Dolecek, C., Baker, S., Brisse, S., Chinh, N. T., Le, T. A., Acosta, C. J., Farrar, J. & other authors ( 2006; ). Evolutionary history of Salmonella typhi. Science 314, 1301–1304.[CrossRef]
    [Google Scholar]
  47. Schierup, M. H. & Hein, J. ( 2000; ). Consequences of recombination on traditional phylogenetic analysis. Genetics 156, 879–891.
    [Google Scholar]
  48. Smith, M. J., Smith, N. H., O'Rourke, M. & Spratt, B. G. ( 1993; ). How clonal are bacteria? Proc Natl Acad Sci U S A 90, 4384–4388.[CrossRef]
    [Google Scholar]
  49. Staden, R. ( 1996; ). The Staden sequence analysis package. Mol Biotechnol 5, 233–241.[CrossRef]
    [Google Scholar]
  50. Stephens, D. S. ( 2009; ). Biology and pathogenesis of the evolutionarily successful, obligate human bacterium Neisseria meningitidis. Vaccine 27 (Suppl. 2), B71–B77.[CrossRef]
    [Google Scholar]
  51. Struelens, M. J. ( 1998; ). Molecular epidemiologic typing systems of bacterial pathogens: current issues and perspectives. Mem Inst Oswaldo Cruz 93, 581–585.[CrossRef]
    [Google Scholar]
  52. Tondella, M. L., Reeves, M. W., Popovic, T., Rosenstein, N., Holloway, B. P. & Mayer, L. W. ( 1999; ). Cleavase fragment length polymorphism analysis of Neisseria meningitidis basic metabolic genes. J Clin Microbiol 37, 2402–2407.
    [Google Scholar]
  53. Urwin, R. & Maiden, M. C. ( 2003; ). Multi-locus sequence typing: a tool for global epidemiology. Trends Microbiol 11, 479–487.[CrossRef]
    [Google Scholar]
  54. Urwin, R., Russell, J. E., Thompson, E. A., Holmes, E. C., Feavers, I. M. & Maiden, M. C. ( 2004; ). Distribution of surface protein variants among hyperinvasive meningococci: implications for vaccine design. Infect Immun 72, 5955–5962.[CrossRef]
    [Google Scholar]
  55. van Belkum, A., Struelens, M., de Visser, A., Verbrugh, H. & Tibayrenc, M. ( 2001; ). Role of genomic typing in taxonomy, evolutionary genetics, and microbial epidemiology. Clin Microbiol Rev 14, 547–560.[CrossRef]
    [Google Scholar]
  56. Vos, M. & Didelot, X. ( 2009; ). A comparison of homologous recombination rates in bacteria and archaea. ISME J 3, 199–208.[CrossRef]
    [Google Scholar]
  57. Wang, J.-F., Caugant, D. A., Li, X., Hu, X., Poolman, J. T., Crowe, B. A. & Achtman, M. ( 1992; ). Clonal and antigenic analysis of serogroup A Neisseria meningitidis with particular reference to epidemiological features of epidemic meningitis in China. Infect Immun 60, 5267–5282.
    [Google Scholar]
  58. Womble, D. D. ( 2000; ). GCG: the Wisconsin Package of sequence analysis programs. Methods Mol Biol 132, 3–22.
    [Google Scholar]
  59. Yazdankhah, S. P., Kriz, P., Tzanakaki, G., Kremastinou, J., Kalmusova, J., Musilek, M., Alvestad, T., Jolley, K. A., Wilson, D. J. & other authors ( 2004; ). Distribution of serogroups and genotypes among disease-associated and carried isolates of Neisseria meningitidis from the Czech Republic, Greece, and Norway. J Clin Microbiol 42, 5146–5153.[CrossRef]
    [Google Scholar]
  60. Zhu, P., van der Ende, A., Falush, D., Brieske, N., Morelli, G., Linz, B., Popovic, T., Schuurman, I. G., Adegbola, R. A. & other authors ( 2001; ). Fit genotypes and escape variants of subgroup III Neisseria meningitidis during three pandemics of epidemic meningitis. Proc Natl Acad Sci U S A 98, 5234–5239.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.031534-0
Loading
/content/journal/micro/10.1099/mic.0.031534-0
Loading

Data & Media loading...

Supplements

vol. , part 10, pp. 3176 - 3186

Supplementary tables [ Excel file] (294 kb): Properties of the isolates analysed Positions of the loci containing the gene fragments on the FAM18 genome sequence



EXCEL
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error