1887

Abstract

(MG) is an economically important pathogen of poultry worldwide, causing chronic respiratory disease in chickens and turkeys. Differentiation of MG strains is critical, especially in countries where poultry flocks are vaccinated with live vaccines. In this study, oligonucleotide primers were designed based on a region preceding the trinucleotide repeat of a member of the gene family, and amplicons of 145–352 bp were generated from cultures of 10 different MG strains, including the ts-11, F and 6/85 vaccine strains. High-resolution melting (HRM) curve analysis of the resultant amplicons could differentiate all MG strains. Analysis of the nucleotide sequences of the amplicons from each strain revealed that each melting curve profile related to a unique DNA sequence. The HRM curve profiles (for ts-11) remained consistent after at least five passages under laboratory conditions. PCR-HRM curve analysis of 33 DNA extracts derived from respiratory swabs, or mycoplasma cultures grown from respiratory swabs, of ts-11-vaccinated commercial or specific pathogen-free chickens identified all these specimens, according to their sequences, as ts-11. The potential of the PCR-HRM curve analysis was also shown in the genotyping of 30 additional MG isolates from Europe, the USA and Israel. The results presented in this study indicate that PCR followed by HRM curve analysis provides a rapid and robust technique for genotyping of MG isolates/strains using both MG cultures and clinical swabs.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.031351-0
2010-04-01
2019-10-22
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/4/1019.html?itemId=/content/journal/micro/10.1099/mic.0.031351-0&mimeType=html&fmt=ahah

References

  1. Adler, H. E., Yamamoto, R. & Berg, J. ( 1957; ). Strain differences of pleuropneumonialike organisms of avian origin. Avian Dis 1, 19–27.[CrossRef]
    [Google Scholar]
  2. Baseggio, N., Glew, M. D., Markham, P. F., Whithear, K. G. & Browning, G. F. ( 1996; ). Size and genomic location of the pMGA multigene family of Mycoplasma gallisepticum. Microbiology 142, 1429–1435.[CrossRef]
    [Google Scholar]
  3. Callison, S. A., Riblet, S. M., Sun, S., Ikuta, N., Hilt, D., Leiting, V., Kleven, S. H., Suarez, D. L. & Garcia, M. ( 2006; ). Development and validation of a real-time Taqman polymerase chain reaction assay for the detection of Mycoplasma gallisepticum in naturally infected birds. Avian Dis 50, 537–544.[CrossRef]
    [Google Scholar]
  4. Carpenter, T. E., Miller, K. F., Gentry, R. F., Schwartz, L. D. & Mallinson, E. T. ( 1979; ). Control of Mycoplasma gallisepticum in commercial laying chickens using artificial exposure to Connecticut F strain Mycoplasma gallisepticum. Proc Annu Meet U S Anim Health Assoc 83, 364–370.
    [Google Scholar]
  5. Cherry, J. J., Ley, D. H. & Altizer, S. ( 2006; ). Genotypic analyses of Mycoplasma gallisepticum isolates from songbirds by random amplification of polymorphic DNA and amplified-fragment length polymorphism. J Wildl Dis 42, 421–428.[CrossRef]
    [Google Scholar]
  6. Evans, R. D. & Hafez, Y. S. ( 1992; ). Evaluation of a Mycoplasma gallisepticum strain exhibiting reduced virulence for prevention and control of poultry mycoplasmosis. Avian Dis 36, 197–201.[CrossRef]
    [Google Scholar]
  7. Evans, J. D. & Leigh, S. A. ( 2008; ). Differentiation of Mycoplasma gallisepticum vaccine strains ts-11 and 6/85 from commonly used Mycoplasma gallisepticum challenge strains by PCR. Avian Dis 52, 491–497.[CrossRef]
    [Google Scholar]
  8. Feberwee, A., Dijkstra, J. R., von Banniseht-Wysmuller, T. E., Gielkens, A. L. & Wagenaar, J. A. ( 2005a; ). Genotyping of Mycoplasma gallisepticum and M. synoviae by amplified fragment length polymorphism (AFLP) analysis and digitalized random amplified polymorphic DNA (RAPD) analysis. Vet Microbiol 111, 125–131.[CrossRef]
    [Google Scholar]
  9. Feberwee, A., Mekkes, D. R., de Wit, J. J., Hartman, E. G. & Pijpers, A. ( 2005b; ). Comparison of culture, PCR, and different serologic tests for detection of Mycoplasma gallisepticum and Mycoplasma synoviae infections. Avian Dis 49, 260–268.[CrossRef]
    [Google Scholar]
  10. Felsenstein, J. ( 1989; ). Mathematics vs. evolution: mathematical evolutionary theory. Science 246, 941–942.[CrossRef]
    [Google Scholar]
  11. Ferguson, N. M., Hepp, D., Sun, S., Ikuta, N., Levisohn, S., Kleven, S. H. & Garcia, M. ( 2005; ). Use of molecular diversity of Mycoplasma gallisepticum by gene-targeted sequencing (GTS) and random amplified polymorphic DNA (RAPD) analysis for epidemiological studies. Microbiology 151, 1883–1893.[CrossRef]
    [Google Scholar]
  12. Geary, S. J., Forsyth, M. H., Aboul Saoud, S., Wang, G., Berg, D. E. & Berg, C. M. ( 1994; ). Mycoplasma gallisepticum strain differentiation by arbitrary primer PCR (RAPD) fingerprinting. Mol Cell Probes 8, 311–316.[CrossRef]
    [Google Scholar]
  13. Grodio, J. L., Dhondt, K. V., O'Connell, P. H. & Schat, K. A. ( 2008; ). Detection and quantification of Mycoplasma gallisepticum genome load in conjunctival samples of experimentally infected house finches (Carpodacus mexicanus) using real-time polymerase chain reaction. Avian Pathol 37, 385–391.[CrossRef]
    [Google Scholar]
  14. Hess, M., Neubauer, C. & Hackl, R. ( 2007; ). Interlaboratory comparison of ability to detect nucleic acid of Mycoplasma gallisepticum and Mycoplasma synoviae by polymerase chain reaction. Avian Pathol 36, 127–133.[CrossRef]
    [Google Scholar]
  15. Hewson, K., Noormohammadi, A. H., Devlin, J. M., Mardani, K. & Ignjatovic, J. ( 2009; ). Rapid detection and non-subjective characterisation of infectious bronchitis virus isolates using high-resolution melt curve analysis and a mathematical model. Arch Virol 154, 649–660.[CrossRef]
    [Google Scholar]
  16. Hong, Y., Garcia, M., Levisohn, S., Savelkoul, P., Leiting, V., Lysnyansky, I., Ley, D. H. & Kleven, S. H. ( 2005; ). Differentiation of Mycoplasma gallisepticum strains using amplified fragment length polymorphism and other DNA-based typing methods. Avian Dis 49, 43–49.[CrossRef]
    [Google Scholar]
  17. Jeffery, N., Gasser, R. B., Steer, P. A. & Noormohammadi, A. H. ( 2007; ). Classification of Mycoplasma synoviae strains using single-strand conformation polymorphism and high-resolution melting-curve analysis of the vlhA gene single-copy region. Microbiology 153, 2679–2688.[CrossRef]
    [Google Scholar]
  18. Khan, M. I. & Yamamoto, R. ( 1989; ). Differentiation of the vaccine F-strain from other strains of Mycoplasma gallisepticum by restriction endonuclease analysis. Vet Microbiol 19, 167–174.[CrossRef]
    [Google Scholar]
  19. Kiss, I., Matiz, K., Kaszanyitzky, E., Chavez, Y. & Johansson, K. E. ( 1997; ). Detection and identification of avian mycoplasmas by polymerase chain reaction and restriction fragment length polymorphism assay. Vet Microbiol 58, 23–30.[CrossRef]
    [Google Scholar]
  20. Kleven, S. H., Browning, G. F., Bulach, D. M., Ghiocas, E., Morrow, C. J. & Whithear, K. G. ( 1988a; ). Examination of Mycoplasma gallisepticum strains using restriction endonuclease DNA analysis and DNA–DNA hybridisation. Avian Pathol 17, 559–570.[CrossRef]
    [Google Scholar]
  21. Kleven, S. H., Morrow, C. J. & Whithear, K. G. ( 1988b; ). Comparison of Mycoplasma gallisepticum strains by hemagglutination-inhibition and restriction endonuclease analysis. Avian Dis 32, 731–741.[CrossRef]
    [Google Scholar]
  22. Ley, D. L. ( 2008; ). Mycoplasma gallisepticum infection. In Diseases of Poultry, pp. 807–834. Edited by Y. M. Saif, A. M. Fadly, J. R. Glisson, L. R. McDougald, L. K. Nolan & D. E. Swayne. Ames, IA: Blackwell.
  23. Lysnyansky, I., Garcia, M. & Levisohn, S. ( 2005; ). Use of mgc2-polymerase chain reaction-restriction fragment length polymorphism for rapid differentiation between field isolates and vaccine strains of Mycoplasma gallisepticum in Israel. Avian Dis 49, 238–245.[CrossRef]
    [Google Scholar]
  24. Lysnyansky, I., Gerchman, I., Perk, S. & Levisohn, S. ( 2008; ). Molecular characterization and typing of enrofloxacin-resistant clinical isolates of Mycoplasma gallisepticum. Avian Dis 52, 685–689.[CrossRef]
    [Google Scholar]
  25. Marois, C., Dufour-Gesbert, F. & Kempf, I. ( 2001; ). Molecular differentiation of Mycoplasma gallisepticum and Mycoplasma imitans strains by pulsed-field gel electrophoresis and random amplified polymorphic DNA. J Vet Med B Infect Dis Vet Public Health 48, 695–703.[CrossRef]
    [Google Scholar]
  26. Mettifogo, E., Buzinhani, M., Buim, M. R., Piantino Ferreira, A. J., Kleven, S. H. & Timenetsky, J. ( 2006; ). Molecular characterization of MG isolates using RAPD and PFGE isolated from chickens in Brazil. J Vet Med B Infect Dis Vet Public Health 53, 445–450.[CrossRef]
    [Google Scholar]
  27. Morrow, C. J., Markham, J. F. & Whithear, K. G. ( 1998; ). Production of temperature-sensitive clones of Mycoplasma synoviae for evaluation as live vaccines. Avian Dis 42, 667–670.[CrossRef]
    [Google Scholar]
  28. Nascimento, E. R., Yamamoto, R., Herrick, K. R. & Tait, R. C. ( 1991; ). Polymerase chain reaction for detection of Mycoplasma gallisepticum. Avian Dis 35, 62–69.[CrossRef]
    [Google Scholar]
  29. Papazisi, L., Gorton, T. S., Kutish, G., Markham, P. F., Browning, G. F., Nguyen, D. K., Swartzell, S., Madan, A., Mahairas, G. & Geary, S. J. ( 2003; ). The complete genome sequence of the avian pathogen Mycoplasma gallisepticum strain R(low). Microbiology 149, 2307–2316.[CrossRef]
    [Google Scholar]
  30. Raviv, Z., Callison, S., Ferguson-Noel, N., Laibinis, V., Wooten, R. & Kleven, S. H. ( 2007; ). The Mycoplasma gallisepticum 16S–23S rRNA intergenic spacer region sequence as a novel tool for epizootiological studies. Avian Dis 51, 555–560.[CrossRef]
    [Google Scholar]
  31. Raviv, Z., Callison, S. A., Ferguson-Noel, N. & Kleven, S. H. ( 2008; ). Strain differentiating real-time PCR for Mycoplasma gallisepticum live vaccine evaluation studies. Vet Microbiol 129, 179–187.[CrossRef]
    [Google Scholar]
  32. Reed, G. H., Kent, J. O. & Wittwer, C. T. ( 2007; ). High-resolution DNA melting analysis for simple and efficient molecular diagnostics. Pharmacogenomics 8, 597–608.[CrossRef]
    [Google Scholar]
  33. Soeripto, Whithear, K. G., Cottew, G. S. & Harrigan, K. E. ( 1989; ). Virulence and transmissibility of Mycoplasma gallisepticum. Aust Vet J 66, 65–72.[CrossRef]
    [Google Scholar]
  34. Steer, P. A., Kirkpatrick, N. C., O'Rourke, D. & Noormohammadi, A. H. ( 2009; ). Classification of fowl adenovirus serotypes by use of high-resolution melting-curve analysis of the hexon gene region. J Clin Microbiol 47, 311–321.[CrossRef]
    [Google Scholar]
  35. Thompson, J. D., Higgins, D. G. & Gibson, T. J. ( 1994; ). clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22, 4673–4680.[CrossRef]
    [Google Scholar]
  36. Whithear, K. G., Soeripto, Harringan, K. E. & Ghiocas, E. ( 1990; ). Safety of temperature sensitive mutant Mycoplasma gallisepticum vaccine. Aust Vet J 67, 159–165.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.031351-0
Loading
/content/journal/micro/10.1099/mic.0.031351-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error