1887

Abstract

is a member of the complex (Bcc), a group of opportunistic bacteria that infect the airways of patients with cystic fibrosis (CF) and are extraordinarily resistant to almost all clinically useful antibiotics. Infections in CF patients with Bcc bacteria generally lead to a more rapid decline in lung function, and in some cases to the ‘cepacia syndrome’, a virtually deadly exacerbation of the lung infection with systemic manifestations. These characteristics of Bcc bacteria contribute to higher morbidity and mortality in infected CF patients. In the last 10 years considerable progress has been made in understanding the interactions between Bcc bacteria and mammalian host cells. Bcc isolates can survive either intracellularly within eukaryotic cells or extracellularly in host tissues. They survive within phagocytes and respiratory epithelial cells, and they have the ability to breach the respiratory epithelium layer. Survival and persistence of Bcc bacteria within host cells and tissues are believed to play a key role in pulmonary infection and to contribute to the persistent inflammation observed in patients with CF. This review summarizes recent findings concerning the interaction between Bcc bacteria and epithelial and phagocytic cells.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.031344-0
2009-09-01
2020-10-22
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/9/2809.html?itemId=/content/journal/micro/10.1099/mic.0.031344-0&mimeType=html&fmt=ahah

References

  1. Aaron S. D., Ferris W., Henry D. A., Speert D. P., Macdonald N. E.. 2000; Multiple combination bactericidal antibiotic testing for patients with cystic fibrosis infected with Burkholderia cepacia. Am J Respir Crit Care Med161:1206–1212
    [Google Scholar]
  2. Alix E., Blanc-Potard A. B.. 2007; MgtC: a key player in intramacrophage survival. Trends Microbiol15:252–256
    [Google Scholar]
  3. Aubert D. F., Flannagan R. S., Valvano M. A.. 2008; A novel sensor kinase-response regulator hybrid controls biofilm formation and virulence in Burkholderia cenocepacia. Infect Immun76:1979–1991
    [Google Scholar]
  4. Backert S., Meyer T. F.. 2006; Type IV secretion systems and their effectors in bacterial pathogenesis. Curr Opin Microbiol9:207–217
    [Google Scholar]
  5. Beachey E. H.. 1981; Bacterial adherence: adhesin-receptor interactions mediating the attachment of bacteria to mucosal surface. J Infect Dis143:325–345
    [Google Scholar]
  6. Bingle L. E., Bailey C. M., Pallen M. J.. 2008; Type VI secretion: a beginner's guide. Curr Opin Microbiol11:3–8
    [Google Scholar]
  7. Blanco P., Palucka A. K., Pascual V., Banchereau J.. 2008; Dendritic cells and cytokines in human inflammatory and autoimmune diseases. Cytokine Growth Factor Rev19:41–52
    [Google Scholar]
  8. Blohmke C. J., Victor R. E., Hirschfeld A. F., Elias I. M., Hancock D. G., Lane C. R., Davidson A. G., Wilcox P. G., Smith K. D.. other authors 2008; Innate immunity mediated by TLR5 as a novel antiinflammatory target for cystic fibrosis lung disease. J Immunol180:7764–7773
    [Google Scholar]
  9. Boucher R. C.. 2007; Cystic fibrosis: a disease of vulnerability to airway surface dehydration. Trends Mol Med13:231–240
    [Google Scholar]
  10. Burns J. L., Jonas M., Chi E. Y., Clark D. K., Berger A., Griffith A.. 1996; Invasion of respiratory epithelial cells by Burkholderia ( Pseudomonas) cepacia. Infect Immun64:4054–4059
    [Google Scholar]
  11. Bylund J., Campsall P. A., Ma R. C., Conway B. A., Speert D. P.. 2005; Burkholderia cenocepacia induces neutrophil necrosis in chronic granulomatous disease. J Immunol174:3562–3569
    [Google Scholar]
  12. Bylund J., Burgess L. A., Cescutti P., Ernst R. K., Speert D. P.. 2006; Exopolysaccharides from Burkholderia cenocepacia inhibit neutrophil chemotaxis and scavenge reactive oxygen species. J Biol Chem281:2526–2532
    [Google Scholar]
  13. Caraher E., Duff C., Mullen T., Mc Keon S., Murphy P., Callaghan M., McClean S.. 2007; Invasion and biofilm formation of Burkholderia dolosa is comparable with Burkholderia cenocepacia and Burkholderia multivorans. J Cyst Fibros6:49–56
    [Google Scholar]
  14. Charalabous P., Risk J. M., Jenkins R., Birss A. J., Hart C. A., Smalley J. W.. 2007; Characterization of a bifunctional catalase-peroxidase of Burkholderia cenocepacia. FEMS Immunol Med Microbiol50:37–44
    [Google Scholar]
  15. Cheung K. J. Jr, Li G., Urban T. A., Goldberg J. B., Griffith A., Lu F., Burns J. L.. 2007; Pilus-mediated epithelial cell death in response to infection with Burkholderia cenocepacia. Microbes Infect9:829–837
    [Google Scholar]
  16. Chiu C. H., Ostry A., Speert D. P.. 2001; Invasion of murine respiratory epithelial cells in vivo by Burkholderia cepacia. J Med Microbiol50:594–601
    [Google Scholar]
  17. Cieri M. V., Mayer-Hamblett N., Griffith A., Burns J. L.. 2002; Correlation between an in vitro invasion assay and a murine model of Burkholderia cepacia lung infection. Infect Immun70:1081–1086
    [Google Scholar]
  18. Coenye T., Vandamme P.. 2003; Diversity and significance of Burkholderia species occupying diverse ecological niches. Environ Microbiol5:719–729
    [Google Scholar]
  19. de C. Ventura, M G., Le Goffic R., Balloy V., Plotkowski M. C., Chignard M., Si-Tahar M.. 2008; TLR5, but neither TLR2 nor TLR4, is involved in lung epithelial cell response to Burkholderia cenocepacia. FEMS Immunol Med Microbiol54:37–44
    [Google Scholar]
  20. De Soyza A., Ellis C. D., Khan C. M., Corris P. A., Demarco de Hormaeche R.. 2004; Burkholderia cenocepacia lipopolysaccharide, lipid A, and proinflammatory activity. Am J Respir Crit Care Med170:70–77
    [Google Scholar]
  21. Di A., Brown M. E., Deriy L. V., Li C., Szeto F. L., Chen Y., Huang P., Tong J., Naren A. P.. other authors 2006; CFTR regulates phagosome acidification in macrophages and alters bactericidal activity. Nat Cell Biol8:933–944
    [Google Scholar]
  22. Diamond G., Legarda D., Ryan L. K.. 2000; The innate immune response of the respiratory epithelium. Immunol Rev173:27–38
    [Google Scholar]
  23. Downey D. G., Bell S. C., Elborn J. S.. 2009; Neutrophils in cystic fibrosis. Thorax64:81–88
    [Google Scholar]
  24. Duff C., Murphy P. G., Callaghan M., McClean S.. 2006; Differences in invasion and translocation of Burkholderia cepacia complex species in polarised lung epithelial cells in vitro. Microb Pathog41:183–192
    [Google Scholar]
  25. Flannagan R. S., Valvano M. A.. 2008; Burkholderia cenocepacia requires RpoE for growth under stress conditions and delay of phagolysosomal fusion in macrophages. Microbiology154:643–653
    [Google Scholar]
  26. Galán J. E., Wolf-Watz H.. 2006; Protein delivery into eukaryotic cells by type III secretion machines. Nature444:567–573
    [Google Scholar]
  27. Goldman M. J., Anderson G. M., Stolzenberg E. D., Kari U. P., Zasloff M., Wilson J. M.. 1997; Human β-defensin-1 is a salt-sensitive antibiotic in lung that is inactivated in cystic fibrosis. Cell88:553–560
    [Google Scholar]
  28. Govan J. R. W., Deretic V.. 1996; Microbial pathogenesis in cystic fibrosis: mucoid Pseudomonas aeruginosa and Burkholderia cepacia. Microbiol Rev60:539–574
    [Google Scholar]
  29. Govan J. R., Brown A. R., Jones A. M.. 2007; Evolving epidemiology of Pseudomonas aeruginosa and the Burkholderia cepacia complex in cystic fibrosis lung infection. Future Microbiol2:153–164
    [Google Scholar]
  30. Haggie P. M., Verkman A. S.. 2007; Cystic fibrosis transmembrane conductance regulator-independent phagosomal acidification in macrophages. J Biol Chem282:31422–31428
    [Google Scholar]
  31. Harris J. K., De Groote M. A., Sagel S. D., Zemanick E. T., Kapsner R., Penvari C., Kaess H., Deterding R. R., Accurso F. J., Pace N. R.. 2007; Molecular identification of bacteria in bronchoalveolar lavage fluid from children with cystic fibrosis. Proc Natl Acad Sci U S A104:20529–20533
    [Google Scholar]
  32. Haslett C.. 1999; Granulocyte apoptosis and its role in the resolution and control of lung inflammation. Am J Respir Crit Care Med160:S5–S11
    [Google Scholar]
  33. Hunt T. A., Kooi C., Sokol P. A., Valvano M. A.. 2004; Identification of Burkholderia cenocepacia (formerly Burkholderia cepacia genomovar III) genes required for bacterial survival in vivo. Infect Immun72:4010–4022
    [Google Scholar]
  34. Hutchison M. L., Poxton I. R., Govan J. R. W.. 1998; Burkholderia cepacia produces a hemolysin that is capable of inducing apoptosis and degranulation of mammalian phagocytes. Infect Immun66:2033–2039
    [Google Scholar]
  35. Isles A., Maclusky I., Corey M., Gold R., Prober C., Fleming P., Levison H.. 1984; Pseudomonas cepacia infection in cystic fibrosis: an emerging problem. J Pediatr104:206–210
    [Google Scholar]
  36. Jacquot J., Tabary O., Le Rouzic P., Clement A.. 2008; Airway epithelial cell inflammatory signalling in cystic fibrosis. Int J Biochem Cell Biol40:1703–1715
    [Google Scholar]
  37. Karlsson K. A., Angstrom J., Bergstrom J., Lanne B.. 1992; Microbial interaction with animal cell surface carbohydrates. APMIS Suppl27:71–83
    [Google Scholar]
  38. Kazmierczak M. J., Wiedmann M., Boor K. J.. 2005; Alternative sigma factors and their roles in bacterial virulence. Microbiol Mol Biol Rev69:527–543
    [Google Scholar]
  39. Keig P. M., Ingham E., Kerr K. G.. 2001; Invasion of human type II pneumocytes by Burkholderia cepacia. Microb Pathog30:167–170
    [Google Scholar]
  40. Keig P. M., Ingham E., Vandamme P. A., Kerr K. G.. 2002; Differential invasion of respiratory epithelial cells by members of the Burkholderia cepacia complex. Clin Microbiol Infect8:47–49
    [Google Scholar]
  41. Keith K. E., Valvano M. A.. 2007; Characterization of SodC, a periplasmic superoxide dismutase from Burkholderia cenocepacia. Infect Immun75:2451–2460
    [Google Scholar]
  42. Keith K. E., Killip L., He P., Moran G. H., Valvano M. A.. 2007; Burkholderia cenocepacia C5424 produces a pigment with antioxidant properties using a homogentisate intermediate. J Bacteriol189:9057–9065
    [Google Scholar]
  43. Keith K. E., Hynes D. W., Sholdice J. E., Valvano M. A.. 2009; Delayed association of the NADPH oxidase complex with macrophage vacuoles containing the opportunistic pathogen Burkholderia cenocepacia. Microbiology155:1004–1015
    [Google Scholar]
  44. Kim J. Y., Sajjan U. S., Krasan G. P., LiPuma J. J.. 2005; Disruption of tight junctions during traversal of the respiratory epithelium by Burkholderia cenocepacia. Infect Immun73:7107–7112
    [Google Scholar]
  45. Lamothe J.. 2007; Characterization of the strategy used by Burkholderia cepacia complex bacteria to survive within phagocytic cells PhD thesis Microbiology and Immunology, Faculty of Medicine and Dentistry, University of Western Ontario;
    [Google Scholar]
  46. Lamothe J., Valvano M. A.. 2008; Burkholderia cenocepacia-induced delay of acidification and phagolysosomal fusion in cystic fibrosis transmembrane conductance regulator (CFTR)-defective macrophages. Microbiology154:3825–3834
    [Google Scholar]
  47. Lamothe J., Thyssen S., Valvano M. A.. 2004; Burkholderia cepacia complex isolates survive intracellularly without replication within acidic vacuoles of Acanthamoeba polyphaga. Cell Microbiol6:1127–1138
    [Google Scholar]
  48. Lamothe J., Huynh K. K., Grinstein S., Valvano M. A.. 2007; Intracellular survival of Burkholderia cenocepacia in macrophages is associated with a delay in the maturation of bacteria-containing vacuoles. Cell Microbiol9:40–53
    [Google Scholar]
  49. Landers P., Kerr K. G., Rowbotham T. J., Tipper J. L., Keig P. M., Ingham E., Denton M.. 2000; Survival and growth of Burkholderia cepacia within the free-living amoeba Acanthamoeba polyphaga. Eur J Clin Microbiol Infect Dis19:121–123
    [Google Scholar]
  50. Lefebre M. D., Valvano M. A.. 2001; Catalases and superoxide dismutases in strains of the Burkholderia cepacia complex and their roles in resistance to reactive oxygen species. Microbiology147:97–109
    [Google Scholar]
  51. LiPuma J. J., Spilker T., Gill L. H., Campbell P. W., Liu L., Mahenthiralingam E.. 2001; Disproportionate distribution of Burkholderia cepacia complex species and transmissibility markers in cystic fibrosis. Am J Respir Crit Care Med164:92–96
    [Google Scholar]
  52. Loutet S. A., Flannagan R. S., Kooi C., Sokol P. A., Valvano M. A.. 2006; A complete lipopolysaccharide inner core oligosaccharide is required for resistance of Burkholderia cenocepacia to polymyxin B and bacterial survival in vivo. J Bacteriol188:2073–2080
    [Google Scholar]
  53. Macdonald K. L., Speert D. P.. 2008; Differential modulation of innate immune cell functions by the Burkholderia cepacia complex: Burkholderia cenocepacia but not Burkholderia multivorans disrupts maturation and induces necrosis in human dendritic cells. Cell Microbiol10:2138–2149
    [Google Scholar]
  54. Mahenthiralingam E., Coenye T., Chung J. W., Speert D. P., Govan J. R., Taylor P., Vandamme P.. 2000; Diagnostically and experimentally useful panel of strains from the Burkholderia cepacia complex. J Clin Microbiol38:910–913
    [Google Scholar]
  55. Mahenthiralingam E., Urban T. A., Goldberg J. B.. 2005; The multifarious, multireplicon Burkholderia cepacia complex. Nat Rev Microbiol3:144–156
    [Google Scholar]
  56. Mahenthiralingam E., Baldwin A., Dowson C. G.. 2008; Burkholderia cepacia complex bacteria: opportunistic pathogens with important natural biology. J Appl Microbiol104:1539–1551
    [Google Scholar]
  57. Maloney K. E., Valvano M. A.. 2006; The mgtC gene of Burkholderia cenocepacia is required for growth under magnesium limitation conditions and intracellular survival in macrophages. Infect Immun74:5477–5486
    [Google Scholar]
  58. Marolda C. L., Hauröder B., John M. A., Michel R., Valvano M. A.. 1999; Intracellular survival and saprophytic growth of isolates from the Burkholderia cepacia complex in free-living amoebae. Microbiology145:1509–1517
    [Google Scholar]
  59. Martin D. W., Mohr C. D.. 2000; Invasion and intracellular survival of Burkholderia cepacia. Infect Immun68:24–29
    [Google Scholar]
  60. Matsui H., Grubb B. R., Tarran R., Randell S. H., Gatzy J. T., Davis C. W., Boucher R. C.. 1998; Evidence for periciliary liquid layer depletion, not abnormal ion composition, in the pathogenesis of cystic fibrosis airways disease. Cell95:1005–1015
    [Google Scholar]
  61. Matsui H., Verghese M. W., Kesimer M., Schwab U. E., Randell S. H., Sheehan J. K., Grubb B. R., Boucher R. C.. 2005; Reduced three-dimensional motility in dehydrated airway mucus prevents neutrophil capture and killing bacteria on airway epithelial surfaces. J Immunol175:1090–1099
    [Google Scholar]
  62. McClean S., Callaghan M.. 2009; Burkholderia cepacia complex: epithelial cell-pathogen confrontations and potential for therapeutic intervention. J Med Microbiol58:1–12
    [Google Scholar]
  63. McDowell A., Mahenthiralingam E., Dunbar K. E., Moore J. E., Crowe M., Elborn J. S.. 2004; Epidemiology of Burkholderia cepacia complex species recovered from cystic fibrosis patients: issues related to patient segregation. J Med Microbiol53:663–668
    [Google Scholar]
  64. Medzhitov R.. 2001; Toll-like receptors and innate immunity. Nat Rev Immunol1:135–145
    [Google Scholar]
  65. Minakami R., Sumimotoa H.. 2006; Phagocytosis-coupled activation of the superoxide-producing phagocyte oxidase, a member of the NADPH oxidase (Nox) family. Int J Hematol84:193–198
    [Google Scholar]
  66. Mougous J. D., Cuff M. E., Raunser S., Shen A., Zhou M., Gifford C. A., Goodman A. L., Joachimiak G., Ordoñez C. L.. other authors 2006; A virulence locus of Pseudomonas aeruginosa encodes a protein secretion apparatus. Science312:1526–1530
    [Google Scholar]
  67. Moura J. A., Cristina de Assis M., Ventura G. C., Saliba A. M., Gonzaga L. Jr, Si-Tahar M., Marques Ede A., Plotkowski M. C.. 2008; Differential interaction of bacterial species from the Burkholderia cepacia complex with human airway epithelial cells. Microbes Infect10:52–59
    [Google Scholar]
  68. Mullen T., Markey K., Murphy P., McClean S., Callaghan M.. 2007; Role of lipase in Burkholderia cepacia complex (Bcc) invasion of lung epithelial cells. Eur J Clin Microbiol Infect Dis26:869–877
    [Google Scholar]
  69. Nauseef W. M.. 2007; How human neutrophils kill and degrade microbes: an integrated view. Immunol Rev219:88–102
    [Google Scholar]
  70. Nzula S., Vandamme P., Govan J. R. W.. 2002; Influence of taxonomic status on the in vitro antimicrobial susceptibility of the Burkholderia cepacia complex. J Antimicrob Chemother50:265–269
    [Google Scholar]
  71. Painter R. G., Valentine V. G., Lanson N. A. Jr, Leidal K., Zhang Q., Lombard G., Thompson C., Viswanathan A., Nauseef W. M.. other authors 2006; CFTR expression in human neutrophils and the phagolysosomal chlorination defect in cystic fibrosis. Biochemistry45:10260–10269
    [Google Scholar]
  72. Painter R. G., Bonvillain R. W., Valentine V. G., Lombard G. A., Laplace S. G., Nauseef W. M., Wang G.. 2008; The role of chloride anion and CFTR in killing of Pseudomonas aeruginosa by normal and CF neutrophils. J Leukoc Biol83:1345–1353
    [Google Scholar]
  73. Pukatzki S., Ma A. T., Sturtevant D., Krastins B., Sarracino D., Nelson W. C., Heidelberg J. F., Mekalanos J. J.. 2006; Identification of a conserved bacterial protein secretion system in Vibrio cholerae using the Dictyostelium host model system. Proc Natl Acad Sci U S A103:1528–1533
    [Google Scholar]
  74. Reddi K., Phagoo S. B., Anderson K. D., Warburton D.. 2003; Burkholderia cepacia-induced IL-8 gene expression in an alveolar epithelial cell line: signaling through CD14 and mitogen-activated protein kinase. Pediatr Res54:297–305
    [Google Scholar]
  75. Riordan J. R., Rommens J. M., Kerem B., Alon N., Rozmahel R., Grzelczak Z., Zielenski J., Lok S., Plavsic N.. other authors 1989; Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science245:1066–1073
    [Google Scholar]
  76. Rogers G. B., Carroll M. P., Serisier D. J., Hockey P. M., Jones G., Kehagia V., Connett G. J., Bruce K. D.. 2006; Use of 16S rRNA gene profiling by terminal restriction fragment length polymorphism analysis to compare bacterial communities in sputum and mouthwash samples from patients with cystic fibrosis. J Clin Microbiol44:2601–2604
    [Google Scholar]
  77. Saini L. S., Galsworthy S. B., John M. A., Valvano M. A.. 1999; Intracellular survival of Burkholderia cepacia complex isolates in the presence of macrophage cell activation. Microbiology145:3465–3475
    [Google Scholar]
  78. Sajjan S. U., Forstner J. F.. 1992; Identification of the mucin-binding adhesin of Pseudomonas cepacia isolated from patients with cystic fibrosis. Infect Immun60:1434–1440
    [Google Scholar]
  79. Sajjan U. S., Forstner J. F.. 1993; Role of a 22-kilodalton pilin protein in binding of Pseudomonas cepacia to buccal epithelial cells. Infect Immun61:3157–3163
    [Google Scholar]
  80. Sajjan U. S., Sylvester F. A., Forstner J. F.. 2000; Cable-piliated Burkholderia cepacia binds to cytokeratin 13 of epithelial cells. Infect Immun68:1787–1795
    [Google Scholar]
  81. Sajjan U., Corey M., Humar A., Tullis E., Cutz E., Ackerley C., Forstner J.. 2001; Immunolocalisation of Burkholderia cepacia in the lungs of cystic fibrosis patients. J Med Microbiol50:535–546
    [Google Scholar]
  82. Sajjan U., Ackerley C., Forstner J.. 2002a; Interaction of CblA/adhesin-positive Burkholderia cepacia with squamous epithelium. Cell Microbiol4:73–86
    [Google Scholar]
  83. Sajjan U., Liu L., Lu A., Spilker T., Forstner J., LiPuma J. J.. 2002b; Lack of cable pili expression by cblA-containing Burkholderia cepacia complex. Microbiology148:3477–3484
    [Google Scholar]
  84. Sajjan U. S., Yang J. H., Hershenson M. B., LiPuma J. J.. 2006; Intracellular trafficking and replication of Burkholderia cenocepacia in human cystic fibrosis airway epithelial cells. Cell Microbiol8:1456–1466
    [Google Scholar]
  85. Sajjan S. U., Carmody L. A., Gonzalez C. F., LiPuma J. J.. 2008a; A type IV secretion system contributes to intracellular survival and replication of Burkholderia cenocepacia. Infect Immun76:5447–5455
    [Google Scholar]
  86. Sajjan U. S., Hershenson M. B., Forstner J. F., LiPuma J. J.. 2008b; Burkholderia cenocepacia ET12 strain activates TNFR1 signalling in cystic fibrosis airway epithelial cells. Cell Microbiol10:188–201
    [Google Scholar]
  87. Saldías M. S., Lamothe J., Wu R., Valvano M. A.. 2008; Burkholderia cenocepacia requires the RpoN sigma factor for biofilm formation and intracellular trafficking within macrophages. Infect Immun76:1059–1067
    [Google Scholar]
  88. Schell M. A., Ulrich R. L., Ribot W. J., Brueggemann E. E., Hines H. B., Chen D., Lipscomb L., Kim H. S., Mrázek J.. other authors 2007; Type VI secretion is a major virulence determinant in Burkholderia mallei. Mol Microbiol64:1466–1485
    [Google Scholar]
  89. Schwab U., Leigh M., Ribeiro C., Yankaskas J., Burns K., Gilligan P., Sokol P., Boucher R.. 2002; Patterns of epithelial cell invasion by different species of the Burkholderia cepacia complex in well-differentiated human airway epithelia. Infect Immun70:4547–4555
    [Google Scholar]
  90. Schwab U. E., Ribeiro C. M., Neubauer H., Boucher R. C.. 2003; Role of actin filament network in Burkholderia multivorans invasion in well-differentiated human airway epithelia. Infect Immun71:6607–6609
    [Google Scholar]
  91. Scott C. C., Cuellar-Mata P., Matsuo T., Davidson H. W., Grinstein S.. 2002; Role of 3-phosphoinositides in the maturation of Salmonella-containing vacuoles within host cells. J Biol Chem277:12770–12776
    [Google Scholar]
  92. Sibley C. D., Parkins M. D., Rabin H. R., Duan K., Norgaard J. C., Surette M. G.. 2008; A polymicrobial perspective of pulmonary infections exposes an enigmatic pathogen in cystic fibrosis patients. Proc Natl Acad Sci U S A105:15070–15075
    [Google Scholar]
  93. Simel D. L., Mastin J. P., Pratt P. C., Wisseman C. L., Shelburne J. D., Spock A., Ingram P.. 1984; Scanning electron microscopic study of the airways in normal children and in patients with cystic fibrosis and other lung diseases. Pediatr Pathol2:47–64
    [Google Scholar]
  94. Smalley J. W., Charalabous P., Birss A. J., Hart C. A.. 2001; Detection of heme-binding proteins in epidemic strains of Burkholderia cepacia. Clin Diagn Lab Immunol8:509–514
    [Google Scholar]
  95. Smith J. J., Travis S. M., Greenberg E. P., Welsh M. J.. 1996; Cystic fibrosis airway epithelia fail to kill bacteria because of abnormal airway surface fluid. Cell85:229–236
    [Google Scholar]
  96. Speert D. P., Bond M., Woodman R. C., Curnutte J. T.. 1994; Infection with Pseudomonas cepacia in chronic granulomatous disease: role of non-oxidative killing by neutrophils in host defense. J Infect Dis170:1524–1531
    [Google Scholar]
  97. Speert D. P., Henry D., Vandamme P., Corey M., Mahenthiralingam E.. 2002; Epidemiology of Burkholderia cepacia complex in patients with cystic fibrosis, Canada. Emerg Infect Dis8:181–187
    [Google Scholar]
  98. Suarez G., Sierra J. C., Sha J., Wang S., Erova T. E., Fadl A. A., Foltz S. M., Horneman A. J., Chopra A. K.. 2008; Molecular characterization of a functional type VI secretion system from a clinical isolate of Aeromonas hydrophila. Microb Pathog44:344–361
    [Google Scholar]
  99. Suzuki T., Chow C. W., Downey G. P.. 2008; Role of innate immune cells and their products in lung immunopathology. Int J Biochem Cell Biol40:1348–1361
    [Google Scholar]
  100. Tomich M., Griffith A., Herfst C. A., Burns J. L., Mohr C. D.. 2003; Attenuated virulence of a Burkholderia cepacia type III secretion mutant in a murine model of infection. Infect Immun71:1405–1415
    [Google Scholar]
  101. Tunney M. M., Field T. R., Moriarty T. F., Patrick S., Doering G., Muhlebach M. S., Wolfgang M. C., Boucher R., Gilpin D. F.. other authors 2008; Detection of anaerobic bacteria in high numbers in sputum from patients with cystic fibrosis. Am J Respir Crit Care Med177:995–1001
    [Google Scholar]
  102. Urban T. A., Griffith A., Torok A. M., Smolkin M. E., Burns J. L., Goldberg J. B.. 2004; Contribution of Burkholderia cenocepacia flagella to infectivity and inflammation. Infect Immun72:5126–5134
    [Google Scholar]
  103. Urban T. A., Goldberg J. B., Forstner J. F., Sajjan U. S.. 2005; Cable pili and the 22-kilodalton adhesin are required for Burkholderia cenocepacia binding to and transmigration across the squamous epithelium. Infect Immun73:5426–5437
    [Google Scholar]
  104. Valvano M. A., Keith K. E., Cardona S. T.. 2005; Survival and persistence of opportunistic Burkholderia species in host cells. Curr Opin Microbiol8:99–105
    [Google Scholar]
  105. Valvano M. A., Maloney K. E., Lamothe J., Saldías S.. 2006; Intracellular survival of Burkholderia cepacia complex isolates. In Burkholderia: Molecular Biology and Genomics pp283–300 Edited by Coeyne T., Vandamme P. New York: Horizon Scientific Press;
    [Google Scholar]
  106. Vanlaere E., Lipuma J. J., Baldwin A., Henry D., De Brandt E., Mahenthiralingam E., Speert D., Dowson C., Vandamme P.. 2008; Burkholderia latens sp. nov., Burkholderia diffusa sp. nov., Burkholderia arboris sp. nov., Burkholderia seminalis sp. nov. and Burkholderia metallica sp. nov.,novel species within the Burkholderia cepacia complex. Int J Syst Evol Microbiol58:1580–1590
    [Google Scholar]
  107. Vij N., Mazur S., Zeitlin P. L.. 2009; CFTR is a negative regulator of NF κB mediated innate immune response. PLoS One4:e4664
    [Google Scholar]
  108. Zheng J., Leung K. Y.. 2007; Dissection of a type VI secretion system in Edwardsiella tarda. Mol Microbiol66:1192–1206
    [Google Scholar]
  109. Zhou T., Daugherty M., Grishin N. V., Osterman A. L., Zhang H.. 2000; Structure and mechanism of homoserine kinase: prototype for the GHMP kinase superfamily. Structure8:1247–1257
    [Google Scholar]
  110. Zughaier S. M., Ryley H. C., Jackson S. K.. 1999; A melanin pigment purified from an epidemic strain of Burkholderia cepacia attenuates monocytic respiratory burst activity by scavenging superoxide anion. Infect Immun67:908–913
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.031344-0
Loading
/content/journal/micro/10.1099/mic.0.031344-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error