1887

Abstract

is a member of the complex (Bcc), a group of opportunistic bacteria that infect the airways of patients with cystic fibrosis (CF) and are extraordinarily resistant to almost all clinically useful antibiotics. Infections in CF patients with Bcc bacteria generally lead to a more rapid decline in lung function, and in some cases to the ‘cepacia syndrome’, a virtually deadly exacerbation of the lung infection with systemic manifestations. These characteristics of Bcc bacteria contribute to higher morbidity and mortality in infected CF patients. In the last 10 years considerable progress has been made in understanding the interactions between Bcc bacteria and mammalian host cells. Bcc isolates can survive either intracellularly within eukaryotic cells or extracellularly in host tissues. They survive within phagocytes and respiratory epithelial cells, and they have the ability to breach the respiratory epithelium layer. Survival and persistence of Bcc bacteria within host cells and tissues are believed to play a key role in pulmonary infection and to contribute to the persistent inflammation observed in patients with CF. This review summarizes recent findings concerning the interaction between Bcc bacteria and epithelial and phagocytic cells.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.031344-0
2009-09-01
2020-01-17
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/9/2809.html?itemId=/content/journal/micro/10.1099/mic.0.031344-0&mimeType=html&fmt=ahah

References

  1. Aaron, S. D., Ferris, W., Henry, D. A., Speert, D. P. & Macdonald, N. E. ( 2000; ). Multiple combination bactericidal antibiotic testing for patients with cystic fibrosis infected with Burkholderia cepacia. Am J Respir Crit Care Med 161, 1206–1212.[CrossRef]
    [Google Scholar]
  2. Alix, E. & Blanc-Potard, A. B. ( 2007; ). MgtC: a key player in intramacrophage survival. Trends Microbiol 15, 252–256.[CrossRef]
    [Google Scholar]
  3. Aubert, D. F., Flannagan, R. S. & Valvano, M. A. ( 2008; ). A novel sensor kinase-response regulator hybrid controls biofilm formation and virulence in Burkholderia cenocepacia. Infect Immun 76, 1979–1991.[CrossRef]
    [Google Scholar]
  4. Backert, S. & Meyer, T. F. ( 2006; ). Type IV secretion systems and their effectors in bacterial pathogenesis. Curr Opin Microbiol 9, 207–217.[CrossRef]
    [Google Scholar]
  5. Beachey, E. H. ( 1981; ). Bacterial adherence: adhesin-receptor interactions mediating the attachment of bacteria to mucosal surface. J Infect Dis 143, 325–345.[CrossRef]
    [Google Scholar]
  6. Bingle, L. E., Bailey, C. M. & Pallen, M. J. ( 2008; ). Type VI secretion: a beginner's guide. Curr Opin Microbiol 11, 3–8.[CrossRef]
    [Google Scholar]
  7. Blanco, P., Palucka, A. K., Pascual, V. & Banchereau, J. ( 2008; ). Dendritic cells and cytokines in human inflammatory and autoimmune diseases. Cytokine Growth Factor Rev 19, 41–52.[CrossRef]
    [Google Scholar]
  8. Blohmke, C. J., Victor, R. E., Hirschfeld, A. F., Elias, I. M., Hancock, D. G., Lane, C. R., Davidson, A. G., Wilcox, P. G., Smith, K. D. & other authors ( 2008; ). Innate immunity mediated by TLR5 as a novel antiinflammatory target for cystic fibrosis lung disease. J Immunol 180, 7764–7773.[CrossRef]
    [Google Scholar]
  9. Boucher, R. C. ( 2007; ). Cystic fibrosis: a disease of vulnerability to airway surface dehydration. Trends Mol Med 13, 231–240.[CrossRef]
    [Google Scholar]
  10. Burns, J. L., Jonas, M., Chi, E. Y., Clark, D. K., Berger, A. & Griffith, A. ( 1996; ). Invasion of respiratory epithelial cells by Burkholderia (Pseudomonas) cepacia. Infect Immun 64, 4054–4059.
    [Google Scholar]
  11. Bylund, J., Campsall, P. A., Ma, R. C., Conway, B. A. & Speert, D. P. ( 2005; ). Burkholderia cenocepacia induces neutrophil necrosis in chronic granulomatous disease. J Immunol 174, 3562–3569.[CrossRef]
    [Google Scholar]
  12. Bylund, J., Burgess, L. A., Cescutti, P., Ernst, R. K. & Speert, D. P. ( 2006; ). Exopolysaccharides from Burkholderia cenocepacia inhibit neutrophil chemotaxis and scavenge reactive oxygen species. J Biol Chem 281, 2526–2532.
    [Google Scholar]
  13. Caraher, E., Duff, C., Mullen, T., Mc Keon, S., Murphy, P., Callaghan, M. & McClean, S. ( 2007; ). Invasion and biofilm formation of Burkholderia dolosa is comparable with Burkholderia cenocepacia and Burkholderia multivorans. J Cyst Fibros 6, 49–56.[CrossRef]
    [Google Scholar]
  14. Charalabous, P., Risk, J. M., Jenkins, R., Birss, A. J., Hart, C. A. & Smalley, J. W. ( 2007; ). Characterization of a bifunctional catalase-peroxidase of Burkholderia cenocepacia. FEMS Immunol Med Microbiol 50, 37–44.[CrossRef]
    [Google Scholar]
  15. Cheung, K. J., Jr, Li, G., Urban, T. A., Goldberg, J. B., Griffith, A., Lu, F. & Burns, J. L. ( 2007; ). Pilus-mediated epithelial cell death in response to infection with Burkholderia cenocepacia. Microbes Infect 9, 829–837.[CrossRef]
    [Google Scholar]
  16. Chiu, C. H., Ostry, A. & Speert, D. P. ( 2001; ). Invasion of murine respiratory epithelial cells in vivo by Burkholderia cepacia. J Med Microbiol 50, 594–601.
    [Google Scholar]
  17. Cieri, M. V., Mayer-Hamblett, N., Griffith, A. & Burns, J. L. ( 2002; ). Correlation between an in vitro invasion assay and a murine model of Burkholderia cepacia lung infection. Infect Immun 70, 1081–1086.[CrossRef]
    [Google Scholar]
  18. Coenye, T. & Vandamme, P. ( 2003; ). Diversity and significance of Burkholderia species occupying diverse ecological niches. Environ Microbiol 5, 719–729.[CrossRef]
    [Google Scholar]
  19. de C. Ventura, G. M., Le Goffic, R., Balloy, V., Plotkowski, M. C., Chignard, M. & Si-Tahar, M. ( 2008; ). TLR5, but neither TLR2 nor TLR4, is involved in lung epithelial cell response to Burkholderia cenocepacia. FEMS Immunol Med Microbiol 54, 37–44.[CrossRef]
    [Google Scholar]
  20. De Soyza, A., Ellis, C. D., Khan, C. M., Corris, P. A. & Demarco de Hormaeche, R. ( 2004; ). Burkholderia cenocepacia lipopolysaccharide, lipid A, and proinflammatory activity. Am J Respir Crit Care Med 170, 70–77.[CrossRef]
    [Google Scholar]
  21. Di, A., Brown, M. E., Deriy, L. V., Li, C., Szeto, F. L., Chen, Y., Huang, P., Tong, J., Naren, A. P. & other authors ( 2006; ). CFTR regulates phagosome acidification in macrophages and alters bactericidal activity. Nat Cell Biol 8, 933–944.[CrossRef]
    [Google Scholar]
  22. Diamond, G., Legarda, D. & Ryan, L. K. ( 2000; ). The innate immune response of the respiratory epithelium. Immunol Rev 173, 27–38.[CrossRef]
    [Google Scholar]
  23. Downey, D. G., Bell, S. C. & Elborn, J. S. ( 2009; ). Neutrophils in cystic fibrosis. Thorax 64, 81–88.
    [Google Scholar]
  24. Duff, C., Murphy, P. G., Callaghan, M. & McClean, S. ( 2006; ). Differences in invasion and translocation of Burkholderia cepacia complex species in polarised lung epithelial cells in vitro. Microb Pathog 41, 183–192.[CrossRef]
    [Google Scholar]
  25. Flannagan, R. S. & Valvano, M. A. ( 2008; ). Burkholderia cenocepacia requires RpoE for growth under stress conditions and delay of phagolysosomal fusion in macrophages. Microbiology 154, 643–653.[CrossRef]
    [Google Scholar]
  26. Galán, J. E. & Wolf-Watz, H. ( 2006; ). Protein delivery into eukaryotic cells by type III secretion machines. Nature 444, 567–573.[CrossRef]
    [Google Scholar]
  27. Goldman, M. J., Anderson, G. M., Stolzenberg, E. D., Kari, U. P., Zasloff, M. & Wilson, J. M. ( 1997; ). Human β-defensin-1 is a salt-sensitive antibiotic in lung that is inactivated in cystic fibrosis. Cell 88, 553–560.[CrossRef]
    [Google Scholar]
  28. Govan, J. R. W. & Deretic, V. ( 1996; ). Microbial pathogenesis in cystic fibrosis: mucoid Pseudomonas aeruginosa and Burkholderia cepacia. Microbiol Rev 60, 539–574.
    [Google Scholar]
  29. Govan, J. R., Brown, A. R. & Jones, A. M. ( 2007; ). Evolving epidemiology of Pseudomonas aeruginosa and the Burkholderia cepacia complex in cystic fibrosis lung infection. Future Microbiol 2, 153–164.[CrossRef]
    [Google Scholar]
  30. Haggie, P. M. & Verkman, A. S. ( 2007; ). Cystic fibrosis transmembrane conductance regulator-independent phagosomal acidification in macrophages. J Biol Chem 282, 31422–31428.[CrossRef]
    [Google Scholar]
  31. Harris, J. K., De Groote, M. A., Sagel, S. D., Zemanick, E. T., Kapsner, R., Penvari, C., Kaess, H., Deterding, R. R., Accurso, F. J. & Pace, N. R. ( 2007; ). Molecular identification of bacteria in bronchoalveolar lavage fluid from children with cystic fibrosis. Proc Natl Acad Sci U S A 104, 20529–20533.[CrossRef]
    [Google Scholar]
  32. Haslett, C. ( 1999; ). Granulocyte apoptosis and its role in the resolution and control of lung inflammation. Am J Respir Crit Care Med 160, S5–S11.[CrossRef]
    [Google Scholar]
  33. Hunt, T. A., Kooi, C., Sokol, P. A. & Valvano, M. A. ( 2004; ). Identification of Burkholderia cenocepacia (formerly Burkholderia cepacia genomovar III) genes required for bacterial survival in vivo. Infect Immun 72, 4010–4022.[CrossRef]
    [Google Scholar]
  34. Hutchison, M. L., Poxton, I. R. & Govan, J. R. W. ( 1998; ). Burkholderia cepacia produces a hemolysin that is capable of inducing apoptosis and degranulation of mammalian phagocytes. Infect Immun 66, 2033–2039.
    [Google Scholar]
  35. Isles, A., Maclusky, I., Corey, M., Gold, R., Prober, C., Fleming, P. & Levison, H. ( 1984; ). Pseudomonas cepacia infection in cystic fibrosis: an emerging problem. J Pediatr 104, 206–210.[CrossRef]
    [Google Scholar]
  36. Jacquot, J., Tabary, O., Le Rouzic, P. & Clement, A. ( 2008; ). Airway epithelial cell inflammatory signalling in cystic fibrosis. Int J Biochem Cell Biol 40, 1703–1715.[CrossRef]
    [Google Scholar]
  37. Karlsson, K. A., Angstrom, J., Bergstrom, J. & Lanne, B. ( 1992; ). Microbial interaction with animal cell surface carbohydrates. APMIS Suppl 27, 71–83.
    [Google Scholar]
  38. Kazmierczak, M. J., Wiedmann, M. & Boor, K. J. ( 2005; ). Alternative sigma factors and their roles in bacterial virulence. Microbiol Mol Biol Rev 69, 527–543.[CrossRef]
    [Google Scholar]
  39. Keig, P. M., Ingham, E. & Kerr, K. G. ( 2001; ). Invasion of human type II pneumocytes by Burkholderia cepacia. Microb Pathog 30, 167–170.[CrossRef]
    [Google Scholar]
  40. Keig, P. M., Ingham, E., Vandamme, P. A. & Kerr, K. G. ( 2002; ). Differential invasion of respiratory epithelial cells by members of the Burkholderia cepacia complex. Clin Microbiol Infect 8, 47–49.[CrossRef]
    [Google Scholar]
  41. Keith, K. E. & Valvano, M. A. ( 2007; ). Characterization of SodC, a periplasmic superoxide dismutase from Burkholderia cenocepacia. Infect Immun 75, 2451–2460.[CrossRef]
    [Google Scholar]
  42. Keith, K. E., Killip, L., He, P., Moran, G. H. & Valvano, M. A. ( 2007; ). Burkholderia cenocepacia C5424 produces a pigment with antioxidant properties using a homogentisate intermediate. J Bacteriol 189, 9057–9065.[CrossRef]
    [Google Scholar]
  43. Keith, K. E., Hynes, D. W., Sholdice, J. E. & Valvano, M. A. ( 2009; ). Delayed association of the NADPH oxidase complex with macrophage vacuoles containing the opportunistic pathogen Burkholderia cenocepacia. Microbiology 155, 1004–1015.[CrossRef]
    [Google Scholar]
  44. Kim, J. Y., Sajjan, U. S., Krasan, G. P. & LiPuma, J. J. ( 2005; ). Disruption of tight junctions during traversal of the respiratory epithelium by Burkholderia cenocepacia. Infect Immun 73, 7107–7112.[CrossRef]
    [Google Scholar]
  45. Lamothe, J. ( 2007; ). Characterization of the strategy used by Burkholderia cepacia complex bacteria to survive within phagocytic cells. PhD thesis, Microbiology and Immunology, Faculty of Medicine and Dentistry, University of Western Ontario.
  46. Lamothe, J. & Valvano, M. A. ( 2008; ). Burkholderia cenocepacia-induced delay of acidification and phagolysosomal fusion in cystic fibrosis transmembrane conductance regulator (CFTR)-defective macrophages. Microbiology 154, 3825–3834.[CrossRef]
    [Google Scholar]
  47. Lamothe, J., Thyssen, S. & Valvano, M. A. ( 2004; ). Burkholderia cepacia complex isolates survive intracellularly without replication within acidic vacuoles of Acanthamoeba polyphaga. Cell Microbiol 6, 1127–1138.[CrossRef]
    [Google Scholar]
  48. Lamothe, J., Huynh, K. K., Grinstein, S. & Valvano, M. A. ( 2007; ). Intracellular survival of Burkholderia cenocepacia in macrophages is associated with a delay in the maturation of bacteria-containing vacuoles. Cell Microbiol 9, 40–53.[CrossRef]
    [Google Scholar]
  49. Landers, P., Kerr, K. G., Rowbotham, T. J., Tipper, J. L., Keig, P. M., Ingham, E. & Denton, M. ( 2000; ). Survival and growth of Burkholderia cepacia within the free-living amoeba Acanthamoeba polyphaga. Eur J Clin Microbiol Infect Dis 19, 121–123.[CrossRef]
    [Google Scholar]
  50. Lefebre, M. D. & Valvano, M. A. ( 2001; ). Catalases and superoxide dismutases in strains of the Burkholderia cepacia complex and their roles in resistance to reactive oxygen species. Microbiology 147, 97–109.
    [Google Scholar]
  51. LiPuma, J. J., Spilker, T., Gill, L. H., Campbell, P. W., Liu, L. & Mahenthiralingam, E. ( 2001; ). Disproportionate distribution of Burkholderia cepacia complex species and transmissibility markers in cystic fibrosis. Am J Respir Crit Care Med 164, 92–96.[CrossRef]
    [Google Scholar]
  52. Loutet, S. A., Flannagan, R. S., Kooi, C., Sokol, P. A. & Valvano, M. A. ( 2006; ). A complete lipopolysaccharide inner core oligosaccharide is required for resistance of Burkholderia cenocepacia to polymyxin B and bacterial survival in vivo. J Bacteriol 188, 2073–2080.[CrossRef]
    [Google Scholar]
  53. Macdonald, K. L. & Speert, D. P. ( 2008; ). Differential modulation of innate immune cell functions by the Burkholderia cepacia complex: Burkholderia cenocepacia but not Burkholderia multivorans disrupts maturation and induces necrosis in human dendritic cells. Cell Microbiol 10, 2138–2149.[CrossRef]
    [Google Scholar]
  54. Mahenthiralingam, E., Coenye, T., Chung, J. W., Speert, D. P., Govan, J. R., Taylor, P. & Vandamme, P. ( 2000; ). Diagnostically and experimentally useful panel of strains from the Burkholderia cepacia complex. J Clin Microbiol 38, 910–913.
    [Google Scholar]
  55. Mahenthiralingam, E., Urban, T. A. & Goldberg, J. B. ( 2005; ). The multifarious, multireplicon Burkholderia cepacia complex. Nat Rev Microbiol 3, 144–156.[CrossRef]
    [Google Scholar]
  56. Mahenthiralingam, E., Baldwin, A. & Dowson, C. G. ( 2008; ). Burkholderia cepacia complex bacteria: opportunistic pathogens with important natural biology. J Appl Microbiol 104, 1539–1551.[CrossRef]
    [Google Scholar]
  57. Maloney, K. E. & Valvano, M. A. ( 2006; ). The mgtC gene of Burkholderia cenocepacia is required for growth under magnesium limitation conditions and intracellular survival in macrophages. Infect Immun 74, 5477–5486.[CrossRef]
    [Google Scholar]
  58. Marolda, C. L., Hauröder, B., John, M. A., Michel, R. & Valvano, M. A. ( 1999; ). Intracellular survival and saprophytic growth of isolates from the Burkholderia cepacia complex in free-living amoebae. Microbiology 145, 1509–1517.[CrossRef]
    [Google Scholar]
  59. Martin, D. W. & Mohr, C. D. ( 2000; ). Invasion and intracellular survival of Burkholderia cepacia. Infect Immun 68, 24–29.[CrossRef]
    [Google Scholar]
  60. Matsui, H., Grubb, B. R., Tarran, R., Randell, S. H., Gatzy, J. T., Davis, C. W. & Boucher, R. C. ( 1998; ). Evidence for periciliary liquid layer depletion, not abnormal ion composition, in the pathogenesis of cystic fibrosis airways disease. Cell 95, 1005–1015.[CrossRef]
    [Google Scholar]
  61. Matsui, H., Verghese, M. W., Kesimer, M., Schwab, U. E., Randell, S. H., Sheehan, J. K., Grubb, B. R. & Boucher, R. C. ( 2005; ). Reduced three-dimensional motility in dehydrated airway mucus prevents neutrophil capture and killing bacteria on airway epithelial surfaces. J Immunol 175, 1090–1099.[CrossRef]
    [Google Scholar]
  62. McClean, S. & Callaghan, M. ( 2009; ). Burkholderia cepacia complex: epithelial cell-pathogen confrontations and potential for therapeutic intervention. J Med Microbiol 58, 1–12.[CrossRef]
    [Google Scholar]
  63. McDowell, A., Mahenthiralingam, E., Dunbar, K. E., Moore, J. E., Crowe, M. & Elborn, J. S. ( 2004; ). Epidemiology of Burkholderia cepacia complex species recovered from cystic fibrosis patients: issues related to patient segregation. J Med Microbiol 53, 663–668.[CrossRef]
    [Google Scholar]
  64. Medzhitov, R. ( 2001; ). Toll-like receptors and innate immunity. Nat Rev Immunol 1, 135–145.[CrossRef]
    [Google Scholar]
  65. Minakami, R. & Sumimotoa, H. ( 2006; ). Phagocytosis-coupled activation of the superoxide-producing phagocyte oxidase, a member of the NADPH oxidase (Nox) family. Int J Hematol 84, 193–198.[CrossRef]
    [Google Scholar]
  66. Mougous, J. D., Cuff, M. E., Raunser, S., Shen, A., Zhou, M., Gifford, C. A., Goodman, A. L., Joachimiak, G., Ordoñez, C. L. & other authors ( 2006; ). A virulence locus of Pseudomonas aeruginosa encodes a protein secretion apparatus. Science 312, 1526–1530.[CrossRef]
    [Google Scholar]
  67. Moura, J. A., Cristina de Assis, M., Ventura, G. C., Saliba, A. M., Gonzaga, L., Jr, Si-Tahar, M., Marques Ede, A. & Plotkowski, M. C. ( 2008; ). Differential interaction of bacterial species from the Burkholderia cepacia complex with human airway epithelial cells. Microbes Infect 10, 52–59.[CrossRef]
    [Google Scholar]
  68. Mullen, T., Markey, K., Murphy, P., McClean, S. & Callaghan, M. ( 2007; ). Role of lipase in Burkholderia cepacia complex (Bcc) invasion of lung epithelial cells. Eur J Clin Microbiol Infect Dis 26, 869–877.[CrossRef]
    [Google Scholar]
  69. Nauseef, W. M. ( 2007; ). How human neutrophils kill and degrade microbes: an integrated view. Immunol Rev 219, 88–102.[CrossRef]
    [Google Scholar]
  70. Nzula, S., Vandamme, P. & Govan, J. R. W. ( 2002; ). Influence of taxonomic status on the in vitro antimicrobial susceptibility of the Burkholderia cepacia complex. J Antimicrob Chemother 50, 265–269.[CrossRef]
    [Google Scholar]
  71. Painter, R. G., Valentine, V. G., Lanson, N. A., Jr, Leidal, K., Zhang, Q., Lombard, G., Thompson, C., Viswanathan, A., Nauseef, W. M. & other authors ( 2006; ). CFTR expression in human neutrophils and the phagolysosomal chlorination defect in cystic fibrosis. Biochemistry 45, 10260–10269.[CrossRef]
    [Google Scholar]
  72. Painter, R. G., Bonvillain, R. W., Valentine, V. G., Lombard, G. A., Laplace, S. G., Nauseef, W. M. & Wang, G. ( 2008; ). The role of chloride anion and CFTR in killing of Pseudomonas aeruginosa by normal and CF neutrophils. J Leukoc Biol 83, 1345–1353.[CrossRef]
    [Google Scholar]
  73. Pukatzki, S., Ma, A. T., Sturtevant, D., Krastins, B., Sarracino, D., Nelson, W. C., Heidelberg, J. F. & Mekalanos, J. J. ( 2006; ). Identification of a conserved bacterial protein secretion system in Vibrio cholerae using the Dictyostelium host model system. Proc Natl Acad Sci U S A 103, 1528–1533.[CrossRef]
    [Google Scholar]
  74. Reddi, K., Phagoo, S. B., Anderson, K. D. & Warburton, D. ( 2003; ). Burkholderia cepacia-induced IL-8 gene expression in an alveolar epithelial cell line: signaling through CD14 and mitogen-activated protein kinase. Pediatr Res 54, 297–305.[CrossRef]
    [Google Scholar]
  75. Riordan, J. R., Rommens, J. M., Kerem, B., Alon, N., Rozmahel, R., Grzelczak, Z., Zielenski, J., Lok, S., Plavsic, N. & other authors ( 1989; ). Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science 245, 1066–1073.[CrossRef]
    [Google Scholar]
  76. Rogers, G. B., Carroll, M. P., Serisier, D. J., Hockey, P. M., Jones, G., Kehagia, V., Connett, G. J. & Bruce, K. D. ( 2006; ). Use of 16S rRNA gene profiling by terminal restriction fragment length polymorphism analysis to compare bacterial communities in sputum and mouthwash samples from patients with cystic fibrosis. J Clin Microbiol 44, 2601–2604.[CrossRef]
    [Google Scholar]
  77. Saini, L. S., Galsworthy, S. B., John, M. A. & Valvano, M. A. ( 1999; ). Intracellular survival of Burkholderia cepacia complex isolates in the presence of macrophage cell activation. Microbiology 145, 3465–3475.
    [Google Scholar]
  78. Sajjan, S. U. & Forstner, J. F. ( 1992; ). Identification of the mucin-binding adhesin of Pseudomonas cepacia isolated from patients with cystic fibrosis. Infect Immun 60, 1434–1440.
    [Google Scholar]
  79. Sajjan, U. S. & Forstner, J. F. ( 1993; ). Role of a 22-kilodalton pilin protein in binding of Pseudomonas cepacia to buccal epithelial cells. Infect Immun 61, 3157–3163.
    [Google Scholar]
  80. Sajjan, U. S., Sylvester, F. A. & Forstner, J. F. ( 2000; ). Cable-piliated Burkholderia cepacia binds to cytokeratin 13 of epithelial cells. Infect Immun 68, 1787–1795.[CrossRef]
    [Google Scholar]
  81. Sajjan, U., Corey, M., Humar, A., Tullis, E., Cutz, E., Ackerley, C. & Forstner, J. ( 2001; ). Immunolocalisation of Burkholderia cepacia in the lungs of cystic fibrosis patients. J Med Microbiol 50, 535–546.
    [Google Scholar]
  82. Sajjan, U., Ackerley, C. & Forstner, J. ( 2002a; ). Interaction of CblA/adhesin-positive Burkholderia cepacia with squamous epithelium. Cell Microbiol 4, 73–86.[CrossRef]
    [Google Scholar]
  83. Sajjan, U., Liu, L., Lu, A., Spilker, T., Forstner, J. & LiPuma, J. J. ( 2002b; ). Lack of cable pili expression by cblA-containing Burkholderia cepacia complex. Microbiology 148, 3477–3484.
    [Google Scholar]
  84. Sajjan, U. S., Yang, J. H., Hershenson, M. B. & LiPuma, J. J. ( 2006; ). Intracellular trafficking and replication of Burkholderia cenocepacia in human cystic fibrosis airway epithelial cells. Cell Microbiol 8, 1456–1466.[CrossRef]
    [Google Scholar]
  85. Sajjan, S. U., Carmody, L. A., Gonzalez, C. F. & LiPuma, J. J. ( 2008a; ). A type IV secretion system contributes to intracellular survival and replication of Burkholderia cenocepacia. Infect Immun 76, 5447–5455.[CrossRef]
    [Google Scholar]
  86. Sajjan, U. S., Hershenson, M. B., Forstner, J. F. & LiPuma, J. J. ( 2008b; ). Burkholderia cenocepacia ET12 strain activates TNFR1 signalling in cystic fibrosis airway epithelial cells. Cell Microbiol 10, 188–201.
    [Google Scholar]
  87. Saldías, M. S., Lamothe, J., Wu, R. & Valvano, M. A. ( 2008; ). Burkholderia cenocepacia requires the RpoN sigma factor for biofilm formation and intracellular trafficking within macrophages. Infect Immun 76, 1059–1067.[CrossRef]
    [Google Scholar]
  88. Schell, M. A., Ulrich, R. L., Ribot, W. J., Brueggemann, E. E., Hines, H. B., Chen, D., Lipscomb, L., Kim, H. S., Mrázek, J. & other authors ( 2007; ). Type VI secretion is a major virulence determinant in Burkholderia mallei. Mol Microbiol 64, 1466–1485.[CrossRef]
    [Google Scholar]
  89. Schwab, U., Leigh, M., Ribeiro, C., Yankaskas, J., Burns, K., Gilligan, P., Sokol, P. & Boucher, R. ( 2002; ). Patterns of epithelial cell invasion by different species of the Burkholderia cepacia complex in well-differentiated human airway epithelia. Infect Immun 70, 4547–4555.[CrossRef]
    [Google Scholar]
  90. Schwab, U. E., Ribeiro, C. M., Neubauer, H. & Boucher, R. C. ( 2003; ). Role of actin filament network in Burkholderia multivorans invasion in well-differentiated human airway epithelia. Infect Immun 71, 6607–6609.[CrossRef]
    [Google Scholar]
  91. Scott, C. C., Cuellar-Mata, P., Matsuo, T., Davidson, H. W. & Grinstein, S. ( 2002; ). Role of 3-phosphoinositides in the maturation of Salmonella-containing vacuoles within host cells. J Biol Chem 277, 12770–12776.[CrossRef]
    [Google Scholar]
  92. Sibley, C. D., Parkins, M. D., Rabin, H. R., Duan, K., Norgaard, J. C. & Surette, M. G. ( 2008; ). A polymicrobial perspective of pulmonary infections exposes an enigmatic pathogen in cystic fibrosis patients. Proc Natl Acad Sci U S A 105, 15070–15075.[CrossRef]
    [Google Scholar]
  93. Simel, D. L., Mastin, J. P., Pratt, P. C., Wisseman, C. L., Shelburne, J. D., Spock, A. & Ingram, P. ( 1984; ). Scanning electron microscopic study of the airways in normal children and in patients with cystic fibrosis and other lung diseases. Pediatr Pathol 2, 47–64.[CrossRef]
    [Google Scholar]
  94. Smalley, J. W., Charalabous, P., Birss, A. J. & Hart, C. A. ( 2001; ). Detection of heme-binding proteins in epidemic strains of Burkholderia cepacia. Clin Diagn Lab Immunol 8, 509–514.
    [Google Scholar]
  95. Smith, J. J., Travis, S. M., Greenberg, E. P. & Welsh, M. J. ( 1996; ). Cystic fibrosis airway epithelia fail to kill bacteria because of abnormal airway surface fluid. Cell 85, 229–236.[CrossRef]
    [Google Scholar]
  96. Speert, D. P., Bond, M., Woodman, R. C. & Curnutte, J. T. ( 1994; ). Infection with Pseudomonas cepacia in chronic granulomatous disease: role of non-oxidative killing by neutrophils in host defense. J Infect Dis 170, 1524–1531.[CrossRef]
    [Google Scholar]
  97. Speert, D. P., Henry, D., Vandamme, P., Corey, M. & Mahenthiralingam, E. ( 2002; ). Epidemiology of Burkholderia cepacia complex in patients with cystic fibrosis, Canada. Emerg Infect Dis 8, 181–187.[CrossRef]
    [Google Scholar]
  98. Suarez, G., Sierra, J. C., Sha, J., Wang, S., Erova, T. E., Fadl, A. A., Foltz, S. M., Horneman, A. J. & Chopra, A. K. ( 2008; ). Molecular characterization of a functional type VI secretion system from a clinical isolate of Aeromonas hydrophila. Microb Pathog 44, 344–361.[CrossRef]
    [Google Scholar]
  99. Suzuki, T., Chow, C. W. & Downey, G. P. ( 2008; ). Role of innate immune cells and their products in lung immunopathology. Int J Biochem Cell Biol 40, 1348–1361.[CrossRef]
    [Google Scholar]
  100. Tomich, M., Griffith, A., Herfst, C. A., Burns, J. L. & Mohr, C. D. ( 2003; ). Attenuated virulence of a Burkholderia cepacia type III secretion mutant in a murine model of infection. Infect Immun 71, 1405–1415.[CrossRef]
    [Google Scholar]
  101. Tunney, M. M., Field, T. R., Moriarty, T. F., Patrick, S., Doering, G., Muhlebach, M. S., Wolfgang, M. C., Boucher, R., Gilpin, D. F. & other authors ( 2008; ). Detection of anaerobic bacteria in high numbers in sputum from patients with cystic fibrosis. Am J Respir Crit Care Med 177, 995–1001.[CrossRef]
    [Google Scholar]
  102. Urban, T. A., Griffith, A., Torok, A. M., Smolkin, M. E., Burns, J. L. & Goldberg, J. B. ( 2004; ). Contribution of Burkholderia cenocepacia flagella to infectivity and inflammation. Infect Immun 72, 5126–5134.[CrossRef]
    [Google Scholar]
  103. Urban, T. A., Goldberg, J. B., Forstner, J. F. & Sajjan, U. S. ( 2005; ). Cable pili and the 22-kilodalton adhesin are required for Burkholderia cenocepacia binding to and transmigration across the squamous epithelium. Infect Immun 73, 5426–5437.[CrossRef]
    [Google Scholar]
  104. Valvano, M. A., Keith, K. E. & Cardona, S. T. ( 2005; ). Survival and persistence of opportunistic Burkholderia species in host cells. Curr Opin Microbiol 8, 99–105.[CrossRef]
    [Google Scholar]
  105. Valvano, M. A., Maloney, K. E., Lamothe, J. & Saldías, S. ( 2006; ). Intracellular survival of Burkholderia cepacia complex isolates. In Burkholderia: Molecular Biology and Genomics, pp. 283–300. Edited by T. Coeyne & P. Vandamme. New York: Horizon Scientific Press.
  106. Vanlaere, E., Lipuma, J. J., Baldwin, A., Henry, D., De Brandt, E., Mahenthiralingam, E., Speert, D., Dowson, C. & Vandamme, P. ( 2008; ). Burkholderia latens sp. nov., Burkholderia diffusa sp. nov., Burkholderia arboris sp. nov., Burkholderia seminalis sp. nov. and Burkholderia metallica sp. nov., novel species within the Burkholderia cepacia complex. Int J Syst Evol Microbiol 58, 1580–1590.[CrossRef]
    [Google Scholar]
  107. Vij, N., Mazur, S. & Zeitlin, P. L. ( 2009; ). CFTR is a negative regulator of NFκB mediated innate immune response. PLoS One 4, e4664 [CrossRef]
    [Google Scholar]
  108. Zheng, J. & Leung, K. Y. ( 2007; ). Dissection of a type VI secretion system in Edwardsiella tarda. Mol Microbiol 66, 1192–1206.[CrossRef]
    [Google Scholar]
  109. Zhou, T., Daugherty, M., Grishin, N. V., Osterman, A. L. & Zhang, H. ( 2000; ). Structure and mechanism of homoserine kinase: prototype for the GHMP kinase superfamily. Structure 8, 1247–1257.[CrossRef]
    [Google Scholar]
  110. Zughaier, S. M., Ryley, H. C. & Jackson, S. K. ( 1999; ). A melanin pigment purified from an epidemic strain of Burkholderia cepacia attenuates monocytic respiratory burst activity by scavenging superoxide anion. Infect Immun 67, 908–913.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.031344-0
Loading
/content/journal/micro/10.1099/mic.0.031344-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error