1887

Abstract

is a dominant genus in the human oral cavity, making up about 20 % of the more than 800 species of bacteria that have been identified, and about 80 % of the early biofilm colonizers. Oral streptococci include both health-compatible (e.g. and ) and pathogenic strains (e.g. the cariogenic ). Because the streptococci have similar metabolic requirements, they have developed defence strategies that lead to antagonism (also known as bacterial interference). expresses bacteriocins that are cytotoxic toward and , whereas and differentially produce HO (under aerobic growth conditions), which is relatively toxic toward . Superimposed on the inter-bacterial combat are the effects of the host defensive mechanisms. We report here on the multifarious effects of bovine lactoperoxidase (bLPO) on the antagonism between and versus . Some of the effects are apparently counterproductive with respect to maintaining a health-compatible population of streptococci. For example, the bLPO system (comprised of bLPO+SCN+HO) destroys HO, thereby abolishing the ability of and to inhibit the growth of . Furthermore, bLPO protein (with or without its substrate) inhibits bacterial growth in a biofilm assay, but sucrose negates the inhibitory effects of the bLPO protein, thereby facilitating adherence of in lieu of and . Our findings may be relevant to environmental pressures that select early supragingival colonizers.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.031310-0
2009-11-01
2019-10-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/11/3691.html?itemId=/content/journal/micro/10.1099/mic.0.031310-0&mimeType=html&fmt=ahah

References

  1. Aas, J. A., Paster, B. J., Stokes, L. N., Olsen, I. & Dewhirst, F. E. ( 2005; ). Defining the normal bacterial flora of the oral cavity. J Clin Microbiol 43, 5721–5732.[CrossRef]
    [Google Scholar]
  2. Aas, J. A., Griffen, A. L., Dardis, S. R., Lee, A. M., Olsen, I., Dewhirst, F. E., Leys, E. J. & Paster, B. J. ( 2008; ). Bacteria of dental caries in primary and permanent teeth in children and young adults. J Clin Microbiol 46, 1407–1417.[CrossRef]
    [Google Scholar]
  3. Adamson, M. & Carlsson, J. ( 1982; ). Lactoperoxidase and thiocyanate protect bacteria from hydrogen peroxide. Infect Immun 35, 20–24.
    [Google Scholar]
  4. Adamson, M. & Pruitt, K. M. ( 1981; ). Lactoperoxidase-catalyzed inactivation of hexokinase. Biochim Biophys Acta 658, 238–247.[CrossRef]
    [Google Scholar]
  5. Ashby, M. T. ( 2008; ). Inorganic chemistry of defensive peroxidases in the human oral cavity. J Dent Res 87, 900–914.[CrossRef]
    [Google Scholar]
  6. Aune, T. M. & Thomas, E. L. ( 1977; ). Accumulation of hypothiocyanite ion during peroxidase-catalyzed oxidation of thiocyanate ion. Eur J Biochem 80, 209–214.[CrossRef]
    [Google Scholar]
  7. Becker, M. R., Paster, B. J., Leys, E. J., Moeschberger, M. L., Kenyon, S. G., Galvin, J. L., Boches, S. K., Dewhirst, F. E. & Griffen, A. L. ( 2002; ). Molecular analysis of bacterial species associated with childhood caries. J Clin Microbiol 40, 1001–1009.[CrossRef]
    [Google Scholar]
  8. Bowden, G. H. ( 1990; ). Effects of fluoride on the microbial ecology of dental plaque. J Dent Res 69, 653–659.
    [Google Scholar]
  9. Bulaj, G., Kortemme, T. & Goldenberg, D. P. ( 1998; ). Ionization–reactivity relationships for cysteine thiols in polypeptides. Biochemistry 37, 8965–8972.[CrossRef]
    [Google Scholar]
  10. Burne, R. A. & Marquis, R. E. ( 2000; ). Alkali production by oral bacteria and protection against dental caries. FEMS Microbiol Lett 193, 1–6.[CrossRef]
    [Google Scholar]
  11. Carlsson, J. ( 1980; ). Bactericidal effect of hydrogen peroxide is prevented by the lactoperoxidase–thiocyanate system under anaerobic conditions. Infect Immun 29, 1190–1192.
    [Google Scholar]
  12. Carlsson, J. ( 1987; ). Salivary peroxidase: an important part of our defense against oxygen toxicity. J Oral Pathol 16, 412–416.
    [Google Scholar]
  13. Carlsson, J., Iwami, Y. & Yamada, T. ( 1983; ). Hydrogen peroxide excretion by oral streptococci and effect of lactoperoxidase-thiocyanate-hydrogen peroxide. Infect Immun 40, 70–80.
    [Google Scholar]
  14. Christensen, G. D., Simpson, W. A., Younger, J. J., Baddour, L. M., Barrett, F. F., Melton, D. M. & Beachey, E. H. ( 1985; ). Adherence of coagulase-negative staphylococci to plastic tissue culture plates: a quantitative model for the adherence of staphylococci to medical devices. J Clin Microbiol 22, 996–1006.
    [Google Scholar]
  15. Christy, A. A. & Egeberg, P. K. ( 2000; ). Oxidation of thiocyanate by hydrogen peroxide – a reaction kinetic study by capillary electrophoresis. Talanta 51, 1049–1058.[CrossRef]
    [Google Scholar]
  16. Courtois, P., Vanden Abbeele, A., Amrani, N. & Pourtois, M. ( 1995; ). Streptococcus sanguis survival rates in the presence of lactoperoxidase-produced OSCN and OI. Med Sci Res 23, 195–197.
    [Google Scholar]
  17. Dashper, S. G., Liu, S. W. & Reynolds, E. C. ( 2007; ). Antimicrobial peptides and their potential as oral therapeutic agents. Int J Pept Res Ther 13, 505–516.[CrossRef]
    [Google Scholar]
  18. Dethlefsen, L., McFall-Ngai, M. & Relman, D. A. ( 2007; ). An ecological and evolutionary perspective on human–microbe mutualism and disease. Nature 449, 811–818.[CrossRef]
    [Google Scholar]
  19. Dolin, M. I. ( 1961; ). Cytochrome-independent electron transport enzymes of bacteria. In The Bacteria, Metabolism, pp. 425–460. Edited by I. C. Gunsalus & R. Y. Stanier. New York: Academic Press.
  20. Donoghue, H. D., Perrons, C. J. & Hudson, D. E. ( 1985; ). The role of H2O2 and the lactoperoxidase-SCN-H2O2 system on the interaction between two bacteria originating from human dental plaque, Streptococcus rattus (mutans) BHT and Streptococcus mitior LPA-1, grown on human teeth in an artificial mouth. Arch Oral Biol 30, 519–523.[CrossRef]
    [Google Scholar]
  21. Donoghue, H. D., Hudson, D. E. & Perrons, C. J. ( 1987; ). Effect of the lactoperoxidase system on streptococcal acid production and growth. J Dent Res 66, 616–618.[CrossRef]
    [Google Scholar]
  22. Ellman, G. L. ( 1959; ). Tissue sulfhydryl groups. Arch Biochem Biophys 82, 70–77.[CrossRef]
    [Google Scholar]
  23. Eyer, P., Worek, F., Kiderlen, D., Sinko, G., Stuglin, A., Simeon-Rudolf, V. & Reiner, E. ( 2003; ). Molar absorption coefficients for the reduced Ellman reagent: reassessment. Anal Biochem 312, 224–227.[CrossRef]
    [Google Scholar]
  24. Fine, D. H., Furgang, D. & Barnett, M. L. ( 2001; ). Comparative antimicrobial activities of antiseptic mouthrinses against isogenic planktonic and biofilm forms of Actinobacillus actinomycetemcomitans. J Clin Periodontol 28, 697–700.[CrossRef]
    [Google Scholar]
  25. Gilliland, S. E. ( 1969; ). Enzymatic determination of residual hydrogen peroxide in milk. J Dairy Sci 52, 321–324.[CrossRef]
    [Google Scholar]
  26. Hamada, S. & Ooshima, T. ( 1975; ). Production and properties of bacteriocins (mutacins) from Streptococcus mutans. Arch Oral Biol 20, 641–648.[CrossRef]
    [Google Scholar]
  27. Hoogendoorn, H. ( 1976; ). Microbial aspects of dental caries. The inhibitory action of the lactoperoxidase system on Streptococcus mutans and other microorganisms. Microb Aspects Dent Caries Proc Workshop 2, 353–357.
    [Google Scholar]
  28. Ihalin, R., Loimaranta, V. & Tenovuo, J. ( 2006; ). Origin, structure, and biological activities of peroxidases in human saliva. Arch Biochem Biophys 445, 261–268.[CrossRef]
    [Google Scholar]
  29. Jakubovics, N. S., Gill, S. R., Vickerman, M. M. & Kolenbrander, P. E. ( 2008; ). Role of hydrogen peroxide in competition and cooperation between Streptococcus gordonii and Actinomyces naeslundii. FEMS Microbiol Ecol 66, 637–644.[CrossRef]
    [Google Scholar]
  30. Kersten, H. W., Moorer, W. R. & Wever, R. ( 1981; ). Thiocyanate as a cofactor in myeloperoxidase activity against Streptococcus mutans. J Dent Res 60, 831–837.[CrossRef]
    [Google Scholar]
  31. Kreth, J., Zhang, Y. & Herzberg, M. C. ( 2008a; ). Streptococcal antagonism in oral biofilms: Streptococcus sanguinis and Streptococcus gordonii interference with Streptococcus mutans. J Bacteriol 190, 4632–4640.[CrossRef]
    [Google Scholar]
  32. Kreth, J., Zhu, L., Merritt, J., Shi, W. & Qi, F. ( 2008b; ). Role of sucrose in the fitness of Streptococcus mutans. Oral Microbiol Immunol 23, 213–219.[CrossRef]
    [Google Scholar]
  33. Kroes, I., Lepp, P. W. & Relman, D. A. ( 1999; ). Bacterial diversity within the human subgingival crevice. Proc Natl Acad Sci U S A 96, 14547–14552.[CrossRef]
    [Google Scholar]
  34. Leung, K. P., Crowe, T. D., Abercrombie, J. J., Molina, C. M., Bradshaw, C. J., Jensen, C. L., Luo, Q. & Thompson, G. A. ( 2005; ). Control of oral biofilm formation by an antimicrobial decapeptide. J Dent Res 84, 1172–1177.[CrossRef]
    [Google Scholar]
  35. Mansson-Rahemtulla, B., Baldone, D. C., Pruitt, K. M. & Rahemtulla, F. ( 1987; ). Effects of variations in pH and hypothiocyanite concentrations on S. mutans glucose metabolism. J Dent Res 66, 486–491.[CrossRef]
    [Google Scholar]
  36. Mansson-Rahemtulla, B., Rahemtulla, F., Baldone, D. C., Pruitt, K. M. & Hjerpe, A. ( 1988; ). Purification and characterization of human salivary peroxidase. Biochemistry 27, 233–239.[CrossRef]
    [Google Scholar]
  37. Marsh, P. D. ( 1999; ). Microbiologic aspects of dental plaque and dental caries. Dent Clin North Am 43, 599–614.
    [Google Scholar]
  38. Marsh, P. D. ( 2005; ). Dental plaque: biological significance of a biofilm and community life-style. J Clin Periodontol 32, 7–15.[CrossRef]
    [Google Scholar]
  39. Marshall, V. M. E., Cole, W. M. & Bramley, A. J. ( 1986; ). Influence of the lactoperoxidase system on susceptibility of the udder to Streptococcus uberis infection. J Dairy Res 53, 507–514.[CrossRef]
    [Google Scholar]
  40. Mickelson, M. N. ( 1966; ). Effect of lactoperoxidase and thiocyanate on the growth of Streptococcus pyogenes and Streptococcus agalactiae in a chemically defined culture medium. J Gen Microbiol 43, 31–43.[CrossRef]
    [Google Scholar]
  41. Mickelson, M. N. ( 1979; ). Antibacterial action of lactoperoxidase-thiocyanate-hydrogen peroxide on Streptococcus agalactiae. Appl Environ Microbiol 38, 821–826.
    [Google Scholar]
  42. Mickelson, M. N. & Brown, R. W. ( 1985; ). Physiological characteristics of Streptococcus dysgalactiae and Streptococcus uberis and the effect of the lactoperoxidase complex on their growth in a chemically-defined medium and milk. J Dairy Sci 68, 1095–1102.[CrossRef]
    [Google Scholar]
  43. Overman, P. R. ( 2000; ). Biofilm: a new view of plaque. J Contemp Dent Pract 1, 18–29.
    [Google Scholar]
  44. Pakula, R. & Walczak, W. ( 1963; ). Nature of competence of transformable streptococci. J Gen Microbiol 31, 125–133.[CrossRef]
    [Google Scholar]
  45. Paster, B. J., Boches, S. K., Galvin, J. L., Ericson, R. E., Lau, C. N., Levanos, V. A., Sahasrabudhe, A. & Dewhirst, F. E. ( 2001; ). Bacterial diversity in human subgingival plaque. J Bacteriol 183, 3770–3783.[CrossRef]
    [Google Scholar]
  46. Paster, B. J., Olsen, I., Aas, J. A. & Dewhirst, F. E. ( 2006; ). The breadth of bacterial diversity in the human periodontal pocket and other oral sites. Periodontol 2000 42, 80–87.[CrossRef]
    [Google Scholar]
  47. Preza, D., Olsen, I., Aas, J. A., Willumsen, T., Grinde, B. & Paster, B. J. ( 2008; ). Bacterial profiles of root caries in elderly patients. J Clin Microbiol 46, 2015–2021.[CrossRef]
    [Google Scholar]
  48. Pruitt, K. M. & Adamson, M. ( 1977; ). Enzyme activity of salivary lactoperoxidase adsorbed to human enamel. Infect Immun 17, 112–116.
    [Google Scholar]
  49. Qi, F., Chen, P. & Caufield, P. W. ( 2001; ). The group I strain of Streptococcus mutans, UA140, produces both the lantibiotic mutacin I and a nonlantibiotic bacteriocin, mutacin IV. Appl Environ Microbiol 67, 15–21.[CrossRef]
    [Google Scholar]
  50. Raes, J. & Bork, P. ( 2008; ). Molecular eco-systems biology: towards an understanding of community function. Nat Rev Microbiol 6, 693–699.[CrossRef]
    [Google Scholar]
  51. Riddles, P. W., Blakeley, R. L. & Zerner, B. ( 1979; ). Ellman's reagent: 5,5′-dithiobis(2-nitrobenzoic acid) – a reexamination. Anal Biochem 94, 75–81.[CrossRef]
    [Google Scholar]
  52. Riva, A., Puxeddu, P., Del Fiacco, M. & Testa-Riva, F. ( 1978; ). Ultrastructural localization of endogenous peroxidase in human parotid and submandibular glands. J Anat 127, 181–191.
    [Google Scholar]
  53. Rosan, B. & Lamont, R. J. ( 2000; ). Dental plaque formation. Microbes Infect 2, 1599–1607.[CrossRef]
    [Google Scholar]
  54. Rupf, S., Merte, K., Eschrich, K., Stosser, L. & Kneist, S. ( 2001; ). Peroxidase reaction as a parameter for discrimination of Streptococcus mutans and Streptococcus sobrinus. Caries Res 35, 258–264.[CrossRef]
    [Google Scholar]
  55. Ryan, C. S. & Kleinberg, I. ( 1995; ). Bacteria in human mouths involved in the production and utilization of hydrogen peroxide. Arch Oral Biol 40, 753–763.[CrossRef]
    [Google Scholar]
  56. Shin, K., Hayasawa, H. & Lonnerdal, B. ( 2001; ). Inhibition of Escherichia coli respiratory enzymes by the lactoperoxidase-hydrogen peroxide-thiocyanate antimicrobial system. J Appl Microbiol 90, 489–493.[CrossRef]
    [Google Scholar]
  57. Sissons, C. H. ( 1997; ). Artificial dental plaque biofilm model systems. Adv Dent Res 11, 110–126.[CrossRef]
    [Google Scholar]
  58. Sissons, C. H., Anderson, S. A., Wong, L., Coleman, M. J. & White, D. C. ( 2007; ). Microbiota of plaque microcosm biofilms: effect of three times daily sucrose pulses in different simulated oral environments. Caries Res 41, 413–422.[CrossRef]
    [Google Scholar]
  59. Socransky, S. S. & Haffajee, A. D. ( 2005; ). Periodontal microbial ecology. Periodontol 2000 38, 135–187.[CrossRef]
    [Google Scholar]
  60. ten Cate, J. M. ( 2006; ). Biofilms, a new approach to the microbiology of dental plaque. Odontology 94, 1–9.[CrossRef]
    [Google Scholar]
  61. Tenovuo, J. & Knuuttila, M. L. E. ( 1977a; ). The antibacterial action of the various components of the lactoperoxidase system on a cariogenic strain of Streptococcus mutans. J Dent Res 56, 1603–1607.[CrossRef]
    [Google Scholar]
  62. Tenovuo, J. & Knuuttila, M. L. E. ( 1977b; ). Antibacterial effect of salivary peroxidases on a cariogenic strain of Streptococcus mutans. J Dent Res 56, 1608–1613.[CrossRef]
    [Google Scholar]
  63. Tenovuo, J., Pruitt, K. M., Mansson-Rahemtulla, B., Harrington, P. & Baldone, D. C. ( 1986; ). Products of thiocyanate peroxidation: properties and reaction mechanisms. Biochim Biophys Acta 870, 377–384.[CrossRef]
    [Google Scholar]
  64. Thomas, E. L. ( 1981; ). Lactoperoxidase-catalyzed oxidation of thiocyanate: equilibriums between oxidized forms of thiocyanate. Biochemistry 20, 3273–3280.[CrossRef]
    [Google Scholar]
  65. Thomas, E. L. ( 1985; ). Bacterial hydrogen peroxide production. In The Lactoperoxidase System: Chemistry and Biological Significance, pp. 179–202. Edited by K. M. Pruitt & J. O. Tenovuo. New York: Marcel Dekker Inc.
  66. Thomas, E. L. & Pera, K. A. ( 1983; ). Oxygen metabolism of Streptococcus mutans: uptake of oxygen and release of superoxide and hydrogen peroxide. J Bacteriol 154, 1236–1244.
    [Google Scholar]
  67. Thomas, E. L., Pera, K. A., Smith, K. W. & Chwang, A. K. ( 1983; ). Inhibition of Streptococcus mutans by the lactoperoxidase antimicrobial system. Infect Immun 39, 767–778.
    [Google Scholar]
  68. Thomas, E. L., Milligan, T. W., Joyner, R. E. & Jefferson, M. M. ( 1994; ). Antibacterial activity of hydrogen peroxide and the lactoperoxidase-hydrogen peroxide-thiocyanate system against oral streptococci. Infect Immun 62, 529–535.
    [Google Scholar]
  69. Tipton, D. A., Braxton, S. D. & Dabbous, M. K. ( 1995; ). Role of saliva and salivary components as modulators of bleaching agent toxicity to human gingival fibroblasts in vitro. J Periodontol 66, 766–774.[CrossRef]
    [Google Scholar]
  70. van der Hoeven, J. S. & Camp, P. J. M. ( 1993; ). Mixed continuous cultures of Streptococcus mutans with Streptococcus sanguis or with Streptococcus oralis as a model to study the ecological effects of the lactoperoxidase system. Caries Res 27, 26–30.[CrossRef]
    [Google Scholar]
  71. Xu, P., Alves, J. M., Kitten, T., Brown, A., Chen, Z., Ozaki, L. S., Manque, P., Ge, X., Serrano, M. G. & other authors ( 2007; ). Genome of the opportunistic pathogen Streptococcus sanguinis. J Bacteriol 189, 3166–3175.[CrossRef]
    [Google Scholar]
  72. Yang, Y., Sreenivasan, P. K., Subramanyam, R. & Cummins, D. ( 2006; ). Multiparameter assessments to determine the effects of sugars and antimicrobials on a polymicrobial oral biofilm. Appl Environ Microbiol 72, 6734–6742.[CrossRef]
    [Google Scholar]
  73. Zaura-Arite, E., van Marle, J. & ten Cate, J. M. ( 2001; ). Confocal microscopy study of undisturbed and chlorhexidine-treated dental biofilm. J Dent Res 80, 1436–1440.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.031310-0
Loading
/content/journal/micro/10.1099/mic.0.031310-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error