1887

Abstract

The transcription factor AreA is a key regulator of nitrogen metabolic gene expression. AreA contains a C-terminal GATA zinc finger DNA-binding domain and activates expression of genes necessary for nitrogen acquisition. Previous studies identified AreB as a potential negative regulator of nitrogen catabolism showing similarity with NreB and ASD4. The gene encodes multiple products containing an N-terminal GATA zinc finger and a leucine zipper motif. We deleted the gene and now show that AreB negatively regulates AreA-dependent nitrogen catabolic gene expression under nitrogen-limiting or nitrogen-starvation conditions. AreB also acts pleiotropically, with functions in growth, conidial germination and asexual development, though not in sexual development. AreB overexpression results in severe growth inhibition, aberrant cell morphology and reduced AreA-dependent gene expression. Deletion of either the DNA-binding domain or the leucine zipper domain results in loss of both nitrogen and developmental phenotypes.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.031252-0
2009-12-01
2020-04-10
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/12/3868.html?itemId=/content/journal/micro/10.1099/mic.0.031252-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Madden T. L., Schaffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J.. 1997; Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res25:3389–3402
    [Google Scholar]
  2. Andrianopoulos A., Hynes M. J.. 1988; Cloning and analysis of the positively acting regulatory gene amdR from Aspergillus nidulans. Mol Cell Biol8:3532–3541
    [Google Scholar]
  3. Andrianopoulos A., Kourambas S., Sharp J. A., Davis M. A., Hynes M. J.. 1998; Characterization of the Aspergillus nidulans nmrA gene involved in nitrogen metabolite repression. J Bacteriol180:1973–1977
    [Google Scholar]
  4. Arst H. N. Jr, Cove D. J.. 1973; Nitrogen metabolite repression in Aspergillus nidulans. Mol Gen Genet126:111–141
    [Google Scholar]
  5. Arst H. N. Jr, Tollervey D., Caddick M. X.. 1989; A translocation associated, loss-of-function mutation in the nitrogen metabolite repression regulatory gene of Aspergillus nidulans can revert intracistronically. Mol Gen Genet215:364–367
    [Google Scholar]
  6. Arst H. N. Jr, Hondmann D. H., Visser J.. 1990; A translocation activating the cryptic nitrogen regulation gene areB inactivates a previously unidentified gene involved in glycerol utilisation in Aspergillus nidulans. Mol Gen Genet223:134–137
    [Google Scholar]
  7. Coffman J. A., Rai R., Loprete D. M., Cunningham T., Svetlov V., Cooper T. G.. 1997; Cross regulation of four GATA factors that control nitrogen catabolic gene expression in Saccharomyces cerevisiae. J Bacteriol179:3416–3429
    [Google Scholar]
  8. Conlon H., Zadra I., Haas H., Arst H. N. Jr, Jones M. G., Caddick M. X.. 2001; The Aspergillus nidulans GATA transcription factor gene areB encodes at least three proteins and features three classes of mutation. Mol Microbiol40:361–375
    [Google Scholar]
  9. Coornaert D., Vissers S., Andre B., Grenson M.. 1992; The UGA43 negative regulatory gene of Saccharomyces cerevisiae contains both a GATA-1 type zinc finger and a putative leucine zipper. Curr Genet21:301–307
    [Google Scholar]
  10. Cove D. J.. 1966; The induction and repression of nitrate reductase in the fungus Aspergillus nidulans. Biochim Biophys Acta113:51–56
    [Google Scholar]
  11. Cunningham T. S., Cooper T. G.. 1991; Expression of the DAL80 gene, whose product is homologous to the GATA factors and is a negative regulator of multiple nitrogen catabolic genes in Saccharomyces cerevisiae, is sensitive to nitrogen catabolite repression. Mol Cell Biol11:6205–6215
    [Google Scholar]
  12. Cunningham T. S., Andhare R., Cooper T. G.. 2000a; Nitrogen catabolite repression of DAL80 expression depends on the relative levels of Gat1p and Ure2p production in Saccharomyces cerevisiae. J Biol Chem275:14408–14414
    [Google Scholar]
  13. Cunningham T. S., Rai R., Cooper T. G.. 2000b; The level of DAL80 expression down-regulates GATA factor-mediated transcription in Saccharomyces cerevisiae. J Bacteriol182:6584–6591
    [Google Scholar]
  14. Davis M. A., Cobbett C. S., Hynes M. J.. 1988; An amdS-lacZ fusion for studying gene regulation in Aspergillus. Gene63:199–212
    [Google Scholar]
  15. Davis M. A., Small A. J., Kourambas S., Hynes M. J.. 1996; The tamA gene of Aspergillus nidulans contains a putative zinc cluster motif which is not required for gene function. J Bacteriol178:3406–3409
    [Google Scholar]
  16. Dzikowska A., Kacprzak M., Tomecki R., Koper M., Scazzocchio C., Weglenski P.. 2003; Specific induction and carbon/nitrogen repression of arginine catabolism gene of Aspergillus nidulans – functional in vivo analysis of the otaA promoter. Fungal Genet Biol38:175–186
    [Google Scholar]
  17. Feng B., Haas H., Marzluf G. A.. 2000; ASD4, a new GATA factor of Neurospora crassa, displays sequence-specific DNA binding and functions in ascus and ascospore development. Biochemistry39:11065–11073
    [Google Scholar]
  18. Fraser J. A., Davis M. A., Hynes M. J.. 2001; The formamidase gene of Aspergillus nidulans: regulation by nitrogen metabolite repression and transcriptional interference by an overlapping upstream gene. Genetics157:119–131
    [Google Scholar]
  19. Grosse V., Krappmann S.. 2008; The asexual pathogen Aspergillus fumigatus expresses functional determinants of Aspergillus nidulans sexual development. Eukaryot Cell7:1724–1732
    [Google Scholar]
  20. Haas H., Angermayr K., Zadra I., Stoffler G.. 1997; Overexpression of nreB, a new GATA factor-encoding gene of Penicillium chrysogenum, leads to repression of the nitrate assimilatory gene cluster. J Biol Chem272:22576–22582
    [Google Scholar]
  21. Haas H., Zadra I., Stoffler G., Angermayr K.. 1999; The Aspergillus nidulans GATA factor SREA is involved in regulation of siderophore biosynthesis and control of iron uptake. J Biol Chem274:4613–4619
    [Google Scholar]
  22. Han K. H., Han K. Y., Yu J. H., Chae K. S., Jahng K. Y., Han D. M.. 2001; The nsdD gene encodes a putative GATA-type transcription factor necessary for sexual development of Aspergillus nidulans. Mol Microbiol41:299–309
    [Google Scholar]
  23. Hynes M. J., Murray S. L., Duncan A., Khew G. S., Davis M. A.. 2006; Regulatory genes controlling fatty acid catabolism and peroxisomal functions in the filamentous fungus Aspergillus nidulans. Eukaryot Cell5:794–805
    [Google Scholar]
  24. Kotaka M., Johnson C., Lamb H. K., Hawkins A. R., Ren J., Stammers D. K.. 2008; Structural analysis of the recognition of the negative regulator NmrA and DNA by the zinc finger from the GATA-type transcription factor AreA. J Mol Biol381:373–382
    [Google Scholar]
  25. Kudla B., Caddick M. X., Langdon T., Martinez-Rossi N. M., Bennett C. F., Sibley S., Davies R. W., Arst H. N. Jr. 1990; The regulatory gene areA mediating nitrogen metabolite repression in Aspergillus nidulans. Mutations affecting specificity of gene activation alter a loop residue of a putative zinc finger. EMBO J9:1355–1364
    [Google Scholar]
  26. Lamb H. K., Ren J., Park A., Johnson C., Leslie K., Cocklin S., Thompson P., Mee C., Cooper A.. other authors 2004; Modulation of the ligand binding properties of the transcription repressor NmrA by GATA-containing DNA and site-directed mutagenesis. Protein Sci13:3127–3138
    [Google Scholar]
  27. Langdon T., Sheerins A., Ravagnani A., Gielkens M., Caddick M. X., Arst H. N. Jr. 1995; Mutational analysis reveals dispensability of the N-terminal region of the Aspergillus transcription factor mediating nitrogen metabolite repression. Mol Microbiol17:877–888
    [Google Scholar]
  28. Larkin M. A., Blackshields G., Brown N. P., Chenna R., McGettigan P. A., McWilliam H., Valentin F., Wallace I. M., Wilm A.. & other authors. 2007; clustal w and clustal_x version 2.0. Bioinformatics23:2947–2948
    [Google Scholar]
  29. Lee S., Taylor J.. 1990; Isolation of DNA from fungal mycelia and single spores. In PCR Protocols: a Guide to Methods and Applications pp282–287 Edited by Innis M. A., Gelfand D. H., White T. J.
    [Google Scholar]
  30. Lowry J. A., Atchley W. R.. 2000; Molecular evolution of the GATA family of transcription factors: conservation within the DNA-binding domain. J Mol Evol50:103–115
    [Google Scholar]
  31. Machida M., Asai K., Sano M., Tanaka T., Kumagai T., Terai G., Kusumoto K., Arima T., Akita O.. other authors 2005; Genome sequencing and analysis of Aspergillus oryzae. Nature438:1157–1161
    [Google Scholar]
  32. Marck C.. 1988; ‘DNA Strider': a ‘C' program for the fast analysis of DNA and protein sequences on the Apple Macintosh family of computers. Nucleic Acids Res16:1829–1836
    [Google Scholar]
  33. Morozov I. Y., Martinez M. G., Jones M. G., Caddick M. X.. 2000; A defined sequence within the 3′ UTR of the areA transcript is sufficient to mediate nitrogen metabolite signalling via accelerated deadenylation. Mol Microbiol37:1248–1257
    [Google Scholar]
  34. Morozov I. Y., Galbis-Martinez M., Jones M. G., Caddick M. X.. 2001; Characterization of nitrogen metabolite signalling in Aspergillus via the regulated degradation of areA mRNA. Mol Microbiol42:269–277
    [Google Scholar]
  35. Nayak T., Szewczyk E., Oakley C. E., Osmani A., Ukil L., Murray S. L., Hynes M. J., Osmani S. A., Oakley B. R.. 2006; A versatile and efficient gene-targeting system for Aspergillus nidulans. Genetics172:1557–1566
    [Google Scholar]
  36. Nierman W. C., Pain A., Anderson M. J., Wortman J. R., Kim H. S., Arroyo J., Berriman M., Abe K., Archer D. B.. other authors 2005; Genomic sequence of the pathogenic and allergenic filamentous fungus Aspergillus fumigatus. Nature438:1151–1156
    [Google Scholar]
  37. Oakley C. E., Weil C. F., Kretz P. L., Oakley B. R.. 1987; Cloning of the riboB locus of Aspergillus nidulans. Gene53:293–298
    [Google Scholar]
  38. Park J., Kim H., Kim S., Kong S., Park J., Kim S., Han H. Y., Park B., Jung K., Lee Y. H.. 2006; A comparative genome-wide analysis of GATA transcription factors in fungi. Genomics Inform4:147–160
    [Google Scholar]
  39. Payne G. A., Nierman W. C., Wortman J. R., Pritchard B. L., Brown D., Dean R. A., Bhatnagar D., Cleveland T. E., Machida M., Yu J.. 2006; Whole genome comparison of Aspergillus flavus and A. oryzae. Med Mycol44:9–11
    [Google Scholar]
  40. Perriere G., Gouy M.. 1996; WWW-query: an on-line retrieval system for biological sequence banks. Biochimie78:364–369
    [Google Scholar]
  41. Platt A., Langdon T., Arst H. N. Jr, Kirk D., Tollervey D., Sanchez J. M., Caddick M. X.. 1996; Nitrogen metabolite signalling involves the C-terminus and the GATA domain of the Aspergillus transcription factor AREA and the 3′ untranslated region of its mRNA. EMBO J15:2791–2801
    [Google Scholar]
  42. Purschwitz J., Muller S., Kastner C., Schoser M., Haas H., Espeso E. A., Atoui A., Calvo A. M., Fischer R.. 2008; Functional and physical interaction of blue- and red-light sensors in Aspergillus nidulans. Curr Biol18:255–259
    [Google Scholar]
  43. Scazzocchio C.. 2000; The fungal GATA factors. Curr Opin Microbiol3:126–131
    [Google Scholar]
  44. Small A. J., Hynes M. J., Davis M. A.. 1999; The TamA protein fused to a DNA-binding domain can recruit AreA, the major nitrogen regulatory protein, to activate gene expression in Aspergillus nidulans. Genetics153:95–105
    [Google Scholar]
  45. Small A. J., Todd R. B., Zanker M. C., Delimitrou S., Hynes M. J., Davis M. A.. 2001; Functional analysis of TamA, a coactivator of nitrogen-regulated gene expression in Aspergillus nidulans. Mol Genet Genomics265:636–646
    [Google Scholar]
  46. Soussi-Boudekou S., Vissers S., Urrestarazu A., Jauniaux J. C., Andre B.. 1997; Gzf3p, a fourth GATA factor involved in nitrogen-regulated transcription in Saccharomyces cerevisiae. Mol Microbiol23:1157–1168
    [Google Scholar]
  47. Thompson J. D., Higgins D. G., Gibson T. J.. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res22:4673–4680
    [Google Scholar]
  48. Todd R. B., Fraser J. A., Wong K. H., Davis M. A., Hynes M. J.. 2005; Nuclear accumulation of the GATA factor AreA in response to complete nitrogen starvation by regulation of nuclear export. Eukaryot Cell4:1646–1653
    [Google Scholar]
  49. Todd R. B., Hynes M. J., Andrianopoulos A.. 2006; The Aspergillus nidulans rcoA gene is required for veA-dependent sexual development. Genetics174:1685–1688
    [Google Scholar]
  50. Todd R. B., Davis M. A., Hynes M. J.. 2007a; Genetic manipulation of Aspergillus nidulans: meiotic progeny for genetic analysis and strain construction. Nat Protoc2:811–821
    [Google Scholar]
  51. Todd R. B., Davis M. A., Hynes M. J.. 2007b; Genetic manipulation of Aspergillus nidulans: heterokaryons and diploids for dominance, complementation and haploidization analyses. Nat Protoc2:822–830
    [Google Scholar]
  52. Tollervey D. W., Arst H. N. Jr. 1982; Domain-wide, locus-specific suppression of nitrogen metabolite repressed mutations in Aspergillus nidulans. Curr Genet6:79–85
    [Google Scholar]
  53. Wilson R. A., Arst H. N. Jr. 1998; Mutational analysis of AREA, a transcriptional activator mediating nitrogen metabolite repression in Aspergillus nidulans and a member of the “streetwise” GATA family of transcription factors. Microbiol Mol Biol Rev62:586–596
    [Google Scholar]
  54. Wong K. H., Hynes M. J., Todd R. B., Davis M. A.. 2007; Transcriptional control of nmrA by the bZIP transcription factor MeaB reveals a new level of nitrogen regulation in Aspergillus nidulans. Mol Microbiol66:534–551
    [Google Scholar]
  55. Wong K. H., Hynes M. J., Davis M. A.. 2008a; Recent advances in nitrogen regulation: a comparison between Saccharomyces cerevisiae and filamentous fungi. Eukaryot Cell7:917–925
    [Google Scholar]
  56. Wong K. H., Todd R. B., Oakley B. R., Oakley C. E., Hynes M. J., Davis M. A.. 2008b; Sumoylation in Aspergillus nidulans: sumO inactivation, overexpression and live-cell imaging. Fungal Genet Biol45:728–737
    [Google Scholar]
  57. Zadra I., Abt B., Parson W., Haas H.. 2000; xylP promoter-based expression system and its use for antisense downregulation of the Penicillium chrysogenum nitrogen regulator NRE. Appl Environ Microbiol66:4810–4816
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.031252-0
Loading
/content/journal/micro/10.1099/mic.0.031252-0
Loading

Data & Media loading...

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error