1887

Abstract

Maltose utilization and regulation in aspergilli is of great importance for cellular physiology and industrial fermentation processes. In , maltose utilization requires a functional locus, composed of three genes: encoding a regulatory protein, encoding maltose permease and encoding maltase. Through a comparative genome and transcriptome analysis we show that the regulon system is active in while it is not present in . In order to utilize maltose, requires a different regulatory system that involves the AmyR regulator for glucoamylase () induction. Analysis of reporter metabolites and subnetworks illustrates the major route of maltose transport and metabolism in . This demonstrates that overall metabolic responses of occur in terms of genes, enzymes and metabolites when the carbon source is altered. Although the knowledge of maltose transport and metabolism is far from being complete in spp., our study not only helps to understand the sugar preference in industrial fermentation processes, but also indicates how maltose affects gene expression and overall metabolism.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.031104-0
2009-12-01
2019-11-14
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/12/3893.html?itemId=/content/journal/micro/10.1099/mic.0.031104-0&mimeType=html&fmt=ahah

References

  1. Affymetrix & GeneChip ( 2007; ). Affymetrix Genechip Expression Analysis Technical Manual. P/N 702232, Affymetrix, Santa Clara, CA, Revision 2.
  2. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. ( 1990; ). Basic local alignment search tool. J Mol Biol 215, 403–410.[CrossRef]
    [Google Scholar]
  3. Andersen, M. R., Vongsangnak, W., Panagiotou, G., Margarita, P. S., Lehmann, L. & Nielsen, J. ( 2008; ). A tri-species Aspergillus microarray – advancing comparative transcriptomics. Proc Natl Acad Sci U S A 105, 4387–4392.[CrossRef]
    [Google Scholar]
  4. Andersson, U. & Rådström, P. ( 2002; ). Physiological function of the maltose operon regulator, MalR, in Lactococcus lactis. BMC Microbiol 2, 28 [CrossRef]
    [Google Scholar]
  5. Baker, S. E. ( 2006; ). Aspergillus niger genomics: past, present and into the future. Med Mycol 44, S17–S21.[CrossRef]
    [Google Scholar]
  6. Baker, S. E. & Bennett, J. ( 2008; ). An overview of the genus Aspergillus. In The Aspergilli: Genomics, Medical Aspects, Biotechnology, and Research Methods, pp. 3–13. Edited by S. A. Osmani & G. H. Goldman. Boca Raton, FL: CRC Press.
  7. Barton, L. L., Georgi, C. E. & Lineback, D. R. ( 1972; ). Effect of maltose on glucoamylase formation by Aspergillus niger. J Bacteriol 111, 771–777.
    [Google Scholar]
  8. Benjamini, Y. & Hochberg, Y. ( 1995; ). Controlling the false discovery rate – a practical and powerful approach to multiple testing. J R Statist Soc B 57, 289–300.
    [Google Scholar]
  9. Breakspear, A. & Momany, M. ( 2007; ). The first fifty microarray studies in filamentous fungi. Microbiology 153, 7–15.[CrossRef]
    [Google Scholar]
  10. Carlsen, M. & Nielsen, J. ( 2001; ). Influence of carbon source on alpha-amylase production by Aspergillus oryzae. Appl Microbiol Biotechnol 57, 346–349.[CrossRef]
    [Google Scholar]
  11. Carlsen, M., Nielsen, J. & Villadsen, J. ( 1996; ). Growth and alpha-amylase production by Aspergillus oryzae during continuous cultivations. J Biotechnol 45, 81–93.[CrossRef]
    [Google Scholar]
  12. Chow, T. H. C., Sollitti, P. & Marmur, J. ( 1989; ). Structure of the multigene family of Mal loci in Saccharomyces. Mol Gen Genet 217, 60–69.[CrossRef]
    [Google Scholar]
  13. Cubero, B. & Scazzocchio, C. ( 1994; ). Two different, adjacent and divergent zinc finger binding sites are necessary for CreA mediated carbon catabolite repression in the proline gene cluster of Aspergillus nidulans. EMBO J 13, 407–415.
    [Google Scholar]
  14. Drysdale, M. R., Kolze, S. E. & Kelly, J. M. ( 1993; ). The Aspergillus niger carbon catabolite repressor gene, creA. Gene 130, 241–245.[CrossRef]
    [Google Scholar]
  15. Dudoit, S., Gendeman, R. C. & Quackenbush, J. ( 2003; ). Open source software for the analysis of microarray data. Biotechniques (Suppl.), 45–51.
    [Google Scholar]
  16. Fedorova, N. D., Khaldi, N., Joardar, V. S., Maiti, R., Amedeo, P., Anderson, M. J., Crabtree, J., Silva, J. C., Badger, J. H. & other authors ( 2008; ). Genomic islands in the pathogenic filamentous fungus Aspergillus fumigatus. PLoS Genet 4, e1000046 [CrossRef]
    [Google Scholar]
  17. Fowler, T., Berka, R. M. & Ward, M. ( 1990; ). Regulation of the glaA gene of Aspergillus niger. Curr Genet 18, 537–545.[CrossRef]
    [Google Scholar]
  18. Galagan, J. E., Calvo, S. E., Cuomo, C., Ma, L. J., Wortman, J. R., Batzoglou, S., Lee, S. I., Baştürkmen, M., Spevak, C. C. & other authors ( 2005; ). Sequencing of Aspergillus nidulans and comparative analysis with A. fumigatus and A. oryzae. Nature 438, 1105–1115.[CrossRef]
    [Google Scholar]
  19. Gautier, L., Cope, L., Bolstad, B. M. & Irizarry, R. A. ( 2004; ). affy – analysis of Affymetrix GeneChip data at the probe level. Bioinformatics 20, 307–315.[CrossRef]
    [Google Scholar]
  20. Gentleman, R. C., Carey, V. J., Bates, D. M., Bolstad, B., Dettling, M., Dudoit, S., Ellis, B., Gautier, L., Ge, Y. & other authors ( 2004; ). Bioconductor: open software development for computational biology and bioinformatics. Genome Biol 5, R80 [CrossRef]
    [Google Scholar]
  21. Irizarry, R. A., Hobbs, B., Collin, F., Beazer-Barclay, Y. D., Antonellis, K. J., Scherf, U. & Speed, T. P. ( 2003; ). Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 4, 249–264.[CrossRef]
    [Google Scholar]
  22. Kato, N., Murakoshi, Y., Kato, M., Kobayashi, T. & Tsukagoshi, N. ( 2002; ). Isomaltose formed by alpha-glucosidases triggers amylase induction in Aspergillus nidulans. Curr Genet 42, 43–50.[CrossRef]
    [Google Scholar]
  23. Klein, C. J. L., Olsson, L., Ronnow, B., Mikkelsen, J. D. & Nielsen, J. ( 1996; ). Alleviation of glucose repression of maltose metabolism by MIG1 disruption in Saccharomyces cerevisiae. Appl Environ Microbiol 62, 4441–4449.
    [Google Scholar]
  24. Machida, M., Asai, K., Sano, M., Tanaka, T., Kumagai, T., Terai, G., Kusumoto, K., Arima, T., Akita, O. & other authors ( 2005; ). Genome sequencing and analysis of Aspergillus oryzae. Nature 438, 1157–1161.[CrossRef]
    [Google Scholar]
  25. Magnuson, J. K. & Lasure, L. L. ( 2004; ). Organic acid production by filamentous fungi. In Advances in Fungal Biotechnology for Industry, Agriculture, and Medicine, pp. 307–340. Edited by J. S. Tkacz & L. Lange. New York: Kluwer Academic/Plenum Publishers.
  26. Needleman, R. B., Kaback, D. B., Dubin, R. A., Perkins, E. L., Rosenberg, N. G., Sutherland, K. A., Forrest, D. B. & Michels, C. A. ( 1984; ). MAL6 of Saccharomyces: a complex genetic locus containing three genes required for maltose fermentation. Proc Natl Acad Sci U S A 81, 2811–2815.[CrossRef]
    [Google Scholar]
  27. Nierman, W. C., Pain, A., Anderson, M. J., Wortman, J. R., Kim, H. S., Arroyo, J., Berriman, M., Abe, K., Archer, D. B. & other authors ( 2005; ). Genomic sequence of the pathogenic and allergenic filamentous fungus Aspergillus fumigatus. Nature 438, 1151–1156.[CrossRef]
    [Google Scholar]
  28. Novak, S., Zechner-Krpan, V. & Maric, V. ( 2004; ). Regulation of maltose transport and metabolism in Saccharomyces cerevisiae. Food Technol Biotechnol 42, 213–218.
    [Google Scholar]
  29. Patil, K. R. & Nielsen, J. ( 2005; ). Uncovering transcriptional regulation of metabolism by using metabolic network topology. Proc Natl Acad Sci U S A 102, 2685–2689.[CrossRef]
    [Google Scholar]
  30. Payne, G. A., Nierman, W. C., Wortman, J. R., Pritchard, B., Brown, D., Dean, R., Bhatnagar, D., Cleveland, T., Machida, M. & Yu, J. ( 2006; ). Whole genome comparison of Aspergillus flavus and A. oryzae. Med Mycol 44, S9–S11.[CrossRef]
    [Google Scholar]
  31. Pedersen, H., Beyer, M. & Nielsen, J. ( 2000; ). Glucoamylase production in batch, chemostat and fed-batch cultivations by an industrial strain of Aspergillus niger. Appl Microbiol Biotechnol 53, 272–277.[CrossRef]
    [Google Scholar]
  32. Pel, H. J., de Winde, J. H., Archer, D. B., Dyer, P. S., Hofmann, G., Schaap, P. J., Turner, G., de Vries, R. P., Albang, R. & other authors ( 2007; ). Genome sequencing and analysis of the versatile cell factory Aspergillus niger CBS 513.88. Nat Biotechnol 25, 221–231.[CrossRef]
    [Google Scholar]
  33. Schrickx, J. M., Krave, A. S., Verdoes, J. C., Vandenhondel, C., Stouthamer, A. H. & Vanverseveld, H. W. ( 1993; ). Growth and product formation in chemostat and recycling cultures by Aspergillus niger N402 and a glucoamylase overproducing transformant, provided with multiple copies of the glaA gene. J Gen Microbiol 139, 2801–2810.[CrossRef]
    [Google Scholar]
  34. Sinha, A. U. & Meller, J. ( 2007; ). Cinteny: flexible analysis and visualization of synteny and genome rearrangements in multiple organisms. BMC Bioinformatics 8, 82 [CrossRef]
    [Google Scholar]
  35. Smyth, G. K., Michaud, J. & Scott, H. S. ( 2005; ). Use of within-array replicate spots for assessing differential expression in microarray experiments. Bioinformatics 21, 2067–2075.[CrossRef]
    [Google Scholar]
  36. Thomas-Chollier, M., Sand, O., Turatsinze, J. V., Janky, R., Defrance, M., Vervisch, E., Brohee, S. & van Helden, J. ( 2008; ). RSAT: regulatory sequence analysis tools. Nucleic Acids Res 36, W119–W127.[CrossRef]
    [Google Scholar]
  37. van Wezel, G. P., White, J., Young, P., Postma, P. W. & Bibb, M. J. ( 1997; ). Substrate induction and glucose repression of maltose utilization by Streptomyces coelicolor A3(2) is controlled by malR, a member of the lacl-galR family of regulatory genes. Mol Microbiol 23, 537–549.[CrossRef]
    [Google Scholar]
  38. Vongsangnak, W., Olsen, P., Hansen, H., Krogsgaard, S. & Nielsen, J. ( 2008; ). Improved annotation through genome-scale metabolic modeling of Aspergillus oryzae. BMC Genomics 9, 245 [CrossRef]
    [Google Scholar]
  39. Workman, C., Jensen, L. J., Jarmer, H., Berka, R., Gautier, L., Nielser, H. B., Saxild, H. H., Nielsen, C., Brunak, S. & Knudsen, S. ( 2002; ). A new non-linear normalization method for reducing variability in DNA microarray experiments. Genome Biol 3, research0048
    [Google Scholar]
  40. Wortman, J. R., Gilsenan, J. M., Joardar, V., Deegan, J., Clutterbuck, J., Andersen, M. R., Archer, D., Bencina, M., Braus, G. & other authors ( 2009; ). The 2008 update of the Aspergillus nidulans genome annotation: a community effort. Fungal Genet Biol 46, S2–S13.[CrossRef]
    [Google Scholar]
  41. Yu, J., Cleveland, T., Nierman, W. & Bennett, J. ( 2005; ). Aspergillus flavus genomics: gateway to human and animal health, food safety, and crop resistance to diseases. Rev Iberoam Micol 22, 194–202.[CrossRef]
    [Google Scholar]
  42. Yuan, X. L., van der Kaaij, R. M., van den Hondel, C., Punt, P. J., van der Maarel, M., Dijkhuizen, L. & Ram, A. F. J. ( 2008; ). Aspergillus niger genome-wide analysis reveals a large number of novel alpha-glucan acting enzymes with unexpected expression profiles. Mol Genet Genomics 279, 545–561.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.031104-0
Loading
/content/journal/micro/10.1099/mic.0.031104-0
Loading

Data & Media loading...

Supplements

details of media used [ PDF] (14 kb) normalized intensities of maltose and glucose conditions considering all the categories of the three biological replicated experiments in and [ Excel file] (3.6 Mb) [ PDF, 730 kb] Comparative sequence analysis of the gene cluster in 10 species. Phylogenetic tree plotted for analysis of evolutionary relationship of in the regulon of aspergilli. Phylogenetic tree plotted for analysis of evolutionary relationship of in the regulon of aspergilli. Phylogenetic tree plotted for analysis of evolutionary relationship of in the regulon of aspergilli. Phylogenetic tree plotted for analysis of evolutionary relationship of the regulon together with 10 neighbouring genes in each species. Statistical details of comparative sequence analysis of the gene cluster in 10 species using the locus as model.

PDF

details of media used [ PDF] (14 kb) normalized intensities of maltose and glucose conditions considering all the categories of the three biological replicated experiments in and [ Excel file] (3.6 Mb) [ PDF, 730 kb] Comparative sequence analysis of the gene cluster in 10 species. Phylogenetic tree plotted for analysis of evolutionary relationship of in the regulon of aspergilli. Phylogenetic tree plotted for analysis of evolutionary relationship of in the regulon of aspergilli. Phylogenetic tree plotted for analysis of evolutionary relationship of in the regulon of aspergilli. Phylogenetic tree plotted for analysis of evolutionary relationship of the regulon together with 10 neighbouring genes in each species. Statistical details of comparative sequence analysis of the gene cluster in 10 species using the locus as model.

EXCEL

details of media used [ PDF] (14 kb) normalized intensities of maltose and glucose conditions considering all the categories of the three biological replicated experiments in and [ Excel file] (3.6 Mb) [ PDF, 730 kb] Comparative sequence analysis of the gene cluster in 10 species. Phylogenetic tree plotted for analysis of evolutionary relationship of in the regulon of aspergilli. Phylogenetic tree plotted for analysis of evolutionary relationship of in the regulon of aspergilli. Phylogenetic tree plotted for analysis of evolutionary relationship of in the regulon of aspergilli. Phylogenetic tree plotted for analysis of evolutionary relationship of the regulon together with 10 neighbouring genes in each species. Statistical details of comparative sequence analysis of the gene cluster in 10 species using the locus as model.

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error