1887

Abstract

Maltose utilization and regulation in aspergilli is of great importance for cellular physiology and industrial fermentation processes. In , maltose utilization requires a functional locus, composed of three genes: encoding a regulatory protein, encoding maltose permease and encoding maltase. Through a comparative genome and transcriptome analysis we show that the regulon system is active in while it is not present in . In order to utilize maltose, requires a different regulatory system that involves the AmyR regulator for glucoamylase () induction. Analysis of reporter metabolites and subnetworks illustrates the major route of maltose transport and metabolism in . This demonstrates that overall metabolic responses of occur in terms of genes, enzymes and metabolites when the carbon source is altered. Although the knowledge of maltose transport and metabolism is far from being complete in spp., our study not only helps to understand the sugar preference in industrial fermentation processes, but also indicates how maltose affects gene expression and overall metabolism.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.031104-0
2009-12-01
2020-08-05
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/12/3893.html?itemId=/content/journal/micro/10.1099/mic.0.031104-0&mimeType=html&fmt=ahah

References

  1. Affymetrix & GeneChip 2007; Affymetrix Genechip Expression Analysis Technical Manual. P/N 702232 Affymetrix; Santa Clara, CA: Revision 2
    [Google Scholar]
  2. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J.. 1990; Basic local alignment search tool. J Mol Biol215:403–410
    [Google Scholar]
  3. Andersen M. R., Vongsangnak W., Panagiotou G., Margarita P. S., Lehmann L., Nielsen J.. 2008; A tri-species Aspergillus microarray – advancing comparative transcriptomics. Proc Natl Acad Sci U S A105:4387–4392
    [Google Scholar]
  4. Andersson U., Rådström P.. 2002; Physiological function of the maltose operon regulator, MalR, in Lactococcus lactis. BMC Microbiol2:28
    [Google Scholar]
  5. Baker S. E.. 2006; Aspergillus niger genomics: past, present and into the future. Med Mycol44:S17–S21
    [Google Scholar]
  6. Baker S. E., Bennett J.. 2008; An overview of the genus Aspergillus. In The Aspergilli: Genomics, Medical Aspects, Biotechnology, and Research Methods pp3–13 Edited by Osmani S. A., Goldman G. H.. Boca Raton, FL: CRC Press;
    [Google Scholar]
  7. Barton L. L., Georgi C. E., Lineback D. R.. 1972; Effect of maltose on glucoamylase formation by Aspergillus niger. J Bacteriol111:771–777
    [Google Scholar]
  8. Benjamini Y., Hochberg Y.. 1995; Controlling the false discovery rate – a practical and powerful approach to multiple testing. J R Statist Soc B57:289–300
    [Google Scholar]
  9. Breakspear A., Momany M.. 2007; The first fifty microarray studies in filamentous fungi. Microbiology153:7–15
    [Google Scholar]
  10. Carlsen M., Nielsen J.. 2001; Influence of carbon source on alpha-amylase production by Aspergillus oryzae. Appl Microbiol Biotechnol57:346–349
    [Google Scholar]
  11. Carlsen M., Nielsen J., Villadsen J.. 1996; Growth and alpha-amylase production by Aspergillus oryzae during continuous cultivations. J Biotechnol45:81–93
    [Google Scholar]
  12. Chow T. H. C., Sollitti P., Marmur J.. 1989; Structure of the multigene family of Mal loci in Saccharomyces. Mol Gen Genet217:60–69
    [Google Scholar]
  13. Cubero B., Scazzocchio C.. 1994; Two different, adjacent and divergent zinc finger binding sites are necessary for CreA mediated carbon catabolite repression in the proline gene cluster of Aspergillus nidulans. EMBO J13:407–415
    [Google Scholar]
  14. Drysdale M. R., Kolze S. E., Kelly J. M.. 1993; The Aspergillus niger carbon catabolite repressor gene, creA. Gene130:241–245
    [Google Scholar]
  15. Dudoit S., Gendeman R. C., Quackenbush J.. 2003; Open source software for the analysis of microarray data. BiotechniquesSuppl45–51
    [Google Scholar]
  16. Fedorova N. D., Khaldi N., Joardar V. S., Maiti R., Amedeo P., Anderson M. J., Crabtree J., Silva J. C., Badger J. H.. other authors 2008; Genomic islands in the pathogenic filamentous fungus Aspergillus fumigatus. PLoS Genet4:e1000046
    [Google Scholar]
  17. Fowler T., Berka R. M., Ward M.. 1990; Regulation of the glaA gene of Aspergillus niger. Curr Genet18:537–545
    [Google Scholar]
  18. Galagan J. E., Calvo S. E., Cuomo C., Ma L. J., Wortman J. R., Batzoglou S., Lee S. I., Baştürkmen M., Spevak C. C.. other authors 2005; Sequencing of Aspergillus nidulans and comparative analysis with A. fumigatus and A. oryzae. Nature438:1105–1115
    [Google Scholar]
  19. Gautier L., Cope L., Bolstad B. M., Irizarry R. A.. 2004; affy – analysis of Affymetrix GeneChip data at the probe level. Bioinformatics20:307–315
    [Google Scholar]
  20. Gentleman R. C., Carey V. J., Bates D. M., Bolstad B., Dettling M., Dudoit S., Ellis B., Gautier L., Ge Y.. other authors 2004; Bioconductor: open software development for computational biology and bioinformatics. Genome Biol5:R80
    [Google Scholar]
  21. Irizarry R. A., Hobbs B., Collin F., Beazer-Barclay Y. D., Antonellis K. J., Scherf U., Speed T. P.. 2003; Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics4:249–264
    [Google Scholar]
  22. Kato N., Murakoshi Y., Kato M., Kobayashi T., Tsukagoshi N.. 2002; Isomaltose formed by alpha-glucosidases triggers amylase induction in Aspergillus nidulans. Curr Genet42:43–50
    [Google Scholar]
  23. Klein C. J. L., Olsson L., Ronnow B., Mikkelsen J. D., Nielsen J.. 1996; Alleviation of glucose repression of maltose metabolism by MIG1 disruption in Saccharomyces cerevisiae. Appl Environ Microbiol62:4441–4449
    [Google Scholar]
  24. Machida M., Asai K., Sano M., Tanaka T., Kumagai T., Terai G., Kusumoto K., Arima T., Akita O.. other authors 2005; Genome sequencing and analysis of Aspergillus oryzae. Nature438:1157–1161
    [Google Scholar]
  25. Magnuson J. K., Lasure L. L.. 2004; Organic acid production by filamentous fungi. In Advances in Fungal Biotechnology for Industry, Agriculture, and Medicine pp307–340 Edited by Tkacz J. S., Lange. New York: Kluwer Academic/Plenum Publishers;
    [Google Scholar]
  26. Needleman R. B., Kaback D. B., Dubin R. A., Perkins E. L., Rosenberg N. G., Sutherland K. A., Forrest D. B., Michels C. A.. 1984; MAL6 of Saccharomyces: a complex genetic locus containing three genes required for maltose fermentation. Proc Natl Acad Sci U S A81:2811–2815
    [Google Scholar]
  27. Nierman W. C., Pain A., Anderson M. J., Wortman J. R., Kim H. S., Arroyo J., Berriman M., Abe K., Archer D. B.. other authors 2005; Genomic sequence of the pathogenic and allergenic filamentous fungus Aspergillus fumigatus. Nature438:1151–1156
    [Google Scholar]
  28. Novak S., Zechner-Krpan V., Maric V.. 2004; Regulation of maltose transport and metabolism in Saccharomyces cerevisiae. Food Technol Biotechnol42:213–218
    [Google Scholar]
  29. Patil K. R., Nielsen J.. 2005; Uncovering transcriptional regulation of metabolism by using metabolic network topology. Proc Natl Acad Sci U S A102:2685–2689
    [Google Scholar]
  30. Payne G. A., Nierman W. C., Wortman J. R., Pritchard B., Brown D., Dean R., Bhatnagar D., Cleveland T., Machida M., Yu J.. 2006; Whole genome comparison of Aspergillus flavus and A. oryzae. Med Mycol44:S9–S11
    [Google Scholar]
  31. Pedersen H., Beyer M., Nielsen J.. 2000; Glucoamylase production in batch, chemostat and fed-batch cultivations by an industrial strain of Aspergillus niger. Appl Microbiol Biotechnol53:272–277
    [Google Scholar]
  32. Pel H. J., de Winde J. H., Archer D. B., Dyer P. S., Hofmann G., Schaap P. J., Turner G., de Vries R. P., Albang R.. other authors 2007; Genome sequencing and analysis of the versatile cell factory Aspergillus niger CBS 513.88. Nat Biotechnol25:221–231
    [Google Scholar]
  33. Schrickx J. M., Krave A. S., Verdoes J. C., Vandenhondel C., Stouthamer A. H., Vanverseveld H. W.. 1993; Growth and product formation in chemostat and recycling cultures by Aspergillus niger N402 and a glucoamylase overproducing transformant, provided with multiple copies of the glaA gene. J Gen Microbiol139:2801–2810
    [Google Scholar]
  34. Sinha A. U., Meller J.. 2007; Cinteny: flexible analysis and visualization of synteny and genome rearrangements in multiple organisms. BMC Bioinformatics8:82
    [Google Scholar]
  35. Smyth G. K., Michaud J., Scott H. S.. 2005; Use of within-array replicate spots for assessing differential expression in microarray experiments. Bioinformatics21:2067–2075
    [Google Scholar]
  36. Thomas-Chollier M., Sand O., Turatsinze J. V., Janky R., Defrance M., Vervisch E., Brohee S., van Helden J.. 2008; RSAT: regulatory sequence analysis tools. Nucleic Acids Res36:W119–W127
    [Google Scholar]
  37. van Wezel G. P., White J., Young P., Postma P. W., Bibb M. J.. 1997; Substrate induction and glucose repression of maltose utilization by Streptomyces coelicolor A3(2) is controlled by malR, a member of the lacl-galR family of regulatory genes. Mol Microbiol23:537–549
    [Google Scholar]
  38. Vongsangnak W., Olsen P., Hansen H., Krogsgaard S., Nielsen J.. 2008; Improved annotation through genome-scale metabolic modeling of Aspergillus oryzae. BMC Genomics9:245
    [Google Scholar]
  39. Workman C., Jensen L. J., Jarmer H., Berka R., Gautier L., Nielser H. B., Saxild H. H., Nielsen C., Brunak S., Knudsen S.. 2002; A new non-linear normalization method for reducing variability in DNA microarray experiments. Genome Biol3:research0048
    [Google Scholar]
  40. Wortman J. R., Gilsenan J. M., Joardar V., Deegan J., Clutterbuck J., Andersen M. R., Archer D., Bencina M., Braus G.. other authors 2009; The 2008 update of the Aspergillus nidulans genome annotation: a community effort. Fungal Genet Biol46:S2–S13
    [Google Scholar]
  41. Yu J., Cleveland T., Nierman W., Bennett J.. 2005; Aspergillus flavus genomics: gateway to human and animal health, food safety, and crop resistance to diseases. Rev Iberoam Micol22:194–202
    [Google Scholar]
  42. Yuan X. L., van der Kaaij R. M., van den Hondel C., Punt P. J., van der Maarel M., Dijkhuizen L., Ram A. F. J.. 2008; Aspergillus niger genome-wide analysis reveals a large number of novel alpha-glucan acting enzymes with unexpected expression profiles. Mol Genet Genomics279:545–561
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.031104-0
Loading
/content/journal/micro/10.1099/mic.0.031104-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error