1887

Abstract

The lysine biosynthetic pathway has to supply large amounts of -aminoadipic acid for penicillin biosynthesis in . In this study, we have characterized the L2 mutant, a lysine auxotroph that shows highly increased expression of several lysine biosynthesis genes (, , , ). The L2 mutant was found to be deficient in homoaconitase activity since it was complemented by the gene. We have cloned a gene (named ) that complements the L2 mutation by transformation with a genomic library, constructed in an autonomous replicating plasmid. The -encoded protein showed high identity to homoaconitases. In addition, we cloned the mutant allele from the L2 strain that showed a G to A point mutation resulting in a Gly to Asp substitution. This mutation is located in a highly conserved region adjacent to two of the three cysteine residues that act as ligands to bind the iron–sulfur cluster required for homoaconitase activity. The L2 mutant accumulates homocitrate. Deletion of the gene (homocitrate synthase) in the L2 strain prevented homocitrate accumulation and reverted expression levels of the four lysine biosynthesis genes tested to those of the parental prototrophic strain. Homocitrate accumulation seems to act as a sensor of lysine-pathway distress, triggering overexpression of four of the lysine biosynthesis genes.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.031005-0
2009-12-01
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/12/3881.html?itemId=/content/journal/micro/10.1099/mic.0.031005-0&mimeType=html&fmt=ahah

References

  1. Aharonowitz Y., Cohen G., Martín J. F. 1992; Penicillin and cephalosporin biosynthetic genes: structure, organisation, regulation, and evolution. Annu Rev Microbiol 46:461–495
    [Google Scholar]
  2. Aharonowitz Y., Bergmeyer J., Cantoral J. M., Cohen G., Demain A. L., Fink U., Kinghorn J., Kleinkauf H., MacCabe A. other authors 1993; Delta-(l-alpha-aminoadipyl)-l-cysteinyl-d-valine synthetase, the multienzyme integrating the four primary reactions in beta-lactam biosynthesis, as a model peptide synthetase. Biotechnology (N Y) 11:807–810
    [Google Scholar]
  3. Bañuelos O., Casqueiro J., Fierro F., Hijarrubia M. J., Gutiérrez S., Martín J. F. 1999; Characterization and lysine control of expression of the lys1 gene of Penicillium chrysogenum encoding homocitrate synthase. Gene 226:51–59
    [Google Scholar]
  4. Bañuelos O., Casqueiro J., Steidl S., Gutiérrez S., Brakhage A., Martín J. F. 2002; Subcellular localization of the homocitrate synthase in Penicillium chrysogenum . Mol Genet Genomics 266:711–719
    [Google Scholar]
  5. Becker B., Feller A., el Alami M., Dubois E., Piérard A. 1998; A nonameric core sequence is required upstream of the LYS genes of Saccharomyces cerevisiae for Lys14p-mediated activation and apparent repression by lysine. Mol Microbiol 29:151–163
    [Google Scholar]
  6. Beinert H., Kennedy M. C. 1989; Engineering of protein-bound iron-sulphur clusters. Eur J Biochem 186:5–15
    [Google Scholar]
  7. Beinert H., Kennedy M. C., Stout C. D. 1996; Aconitase as iron-sulfur protein, enzyme and iron-regulatory protein. Chem Rev 96:2335–2373
    [Google Scholar]
  8. Bhattacharjee J. K. 1985; α-Aminoadipate pathway for the biosynthesis of lysine in lower eukaryotes. Crit Rev Microbiol 12:131–151
    [Google Scholar]
  9. Borell C. W., Urrestarazu L. A., Bhattacharjee J. K. 1984; Two unlinked lysine genes ( LYS9 and LYS14) are required for the synthesis of saccharopine reductase in Saccharomyces cerevisiae . J Bacteriol 159:429–432
    [Google Scholar]
  10. Busch S., Bode H. B., Brakhage A. A., Braus G. H. 2003; Impact of the cross-pathway control on the regulation of lysine and penicillin biosynthesis in Aspergillus nidulans . Curr Genet 42:209–219
    [Google Scholar]
  11. Cantoral J. M., Díez B., Barredo J. L., Alvarez E., Martín J. F. 1987; High-frequency transformation of Penicillium chrysogenum . Biotechnology (N Y) 5494–497
  12. Casqueiro J., Gutierrez S., Bañuelos O., Hijarrubia M. J., Martin J. F. 1999a; Gene targeting in Penicillium chrysogenum: disruption of the lys2 gene leads to penicillin overproduction. J Bacteriol 181:1181–1188
    [Google Scholar]
  13. Casqueiro J., Bañuelos O., Gutiérrez S., Hijarrubia M. J., Martín J. F. 1999b; Intrachromosomal recombination in Penicillium chrysogenum: gene conversion and deletion events. Mol Gen Genet 261:994–1000
    [Google Scholar]
  14. Casqueiro J., Bañuelos O., Gutiérrez S., Martín J. F. 2001; Metabolic engineering of the lysine pathway for β-lactam overproduction in Penicillium chrysogenum . In Novel Frontiers in the Production of Compounds for Biomedical Use. Focus on Biotechnology , vol. 1 pp 147–159 Edited by Van Broedkhoven A., Shapiro F., Anné J. Dordrecht, The Netherlands: Kluwer Academic Publishers;
    [Google Scholar]
  15. Demain A. L. 1957; Inhibition of penicillin formation by lysine. Arch Biochem Biophys 67:244–246
    [Google Scholar]
  16. Demain A. L. 1983; Biosynthesis of β-lactam antibiotics. In Antibiotics Containing the β-Lactam Structure pp 189–228 Edited by Demain A. L. New York: Springer Verlag;
    [Google Scholar]
  17. Díez B., Alvarez E., Cantoral J. M., Barredo J. L., Martín J. F. 1987; Selection and characterization of pyrG mutants of Penicillium chrysogenum lacking orotidine-5′-phosphate decarboxylase and complementation by the pyr4 gene of Neurospora crassa . Curr Genet 12:277–282
    [Google Scholar]
  18. Esmahan C., Alvarez E., Montenegro E., Martin J. F. 1994; Catabolism of lysine in Penicillium chrysogenum leads to formation of 2-aminoadipic acid, a precursor of penicillin biosynthesis. Appl Environ Microbiol 60:1705–1710
    [Google Scholar]
  19. Feller A., Dubois E., Ramos F., Piérard A. 1994; Repression of the genes for lysine biosynthesis in Saccharomyces cerevisiae is caused by limitation of Lys14-dependent transcriptional activation. Mol Cell Biol 14:6411–6418
    [Google Scholar]
  20. Feller A., Ramos F., Pierard A., Dubois E. 1997; Lys80p of Saccharomyces cerevisiae, previously proposed as a specific repressor of LYS genes, is a pleiotropic regulatory factor identical to Mks1p. Yeast 13:1337–1346
    [Google Scholar]
  21. Fierro F., Gutiérrez S., Díez B., Martín J. F. 1993; Resolution of four chromosomes in penicillin-producing filamentous fungi: the penicillin gene cluster is located on chromosome II (9.6 Mb) in Penicillium notatum and chromosome I (10.4 Mb) in Penicillium chrysogenum . Mol Gen Genet 241:573–578
    [Google Scholar]
  22. Fierro F., Barredo J. L., Díez B., Gutiérrez S., Fernández F. J., Martín J. F. 1995; The penicillin gene cluster is amplified in tandem repeats linked by conserved hexanucleotide sequences. Proc Natl Acad Sci U S A 92:6200–6204
    [Google Scholar]
  23. Fierro F., Kosalková K., Gutiérrez S., Martín J. F. 1996; Autonomously replicating plasmids carrying the AMA1 region in Penicillium chrysogenum . Curr Genet 29:482–489
    [Google Scholar]
  24. Friedrich C. G., Demain A. L. 1977; Homocitrate synthase as the crucial site of the lysine effect on the penicillin biosynthesis. J Antibiot (Tokyo 30:760–761
    [Google Scholar]
  25. Gems D. H., Johnston I. L., Clutterbuck A. J. 1991; An autonomously replicating plasmid transforms Aspergillus nidulans at high frequency. Gene 98:61–67
    [Google Scholar]
  26. Haile D. J., Rouault T. A., Tang C. K., Ching J., Chin J. B., Harford J. B., Klausner R. D. 1992; Reciprocal control of RNA-binding and aconitase activity in the regulation of the iron-responsive element binding protein: role of the iron-sulfur cluster. Proc Natl Acad Sci U S A 89:7536–7540
    [Google Scholar]
  27. Henikoff S. 1984; Unidirectional digestion with exonuclease III creates targeted break points for DNA sequencing. Gene 28:351–359
    [Google Scholar]
  28. Hentze M. W., Kühn L. C. 1996; Molecular control of vertebrate iron metabolism mRNA-based regulatory circuits operated by iron, nitric oxide and oxidative stress. Proc Natl Acad Sci U S A 93:8175–8182
    [Google Scholar]
  29. Hijarrubia M. J., Aparicio J. F., Martín J. F. 2002; Nitrate regulation of α-aminoadipate reductase formation and lysine inhibition of its activity in Penicillium chrysogenum and Acremonium chrysogenum . Appl Microbiol Biotechnol 59:270–277
    [Google Scholar]
  30. Hönlinger C., Kubicek C. P. 1989; Regulation of δ-(l- α-aminoadipyl)-l-cysteinyl-d-valine and isopenicillin N biosynthesis in Penicillium chrysogenum by the α-aminoadipate pool size. FEMS Microbiol Lett 53:71–75
    [Google Scholar]
  31. Irvin S. D., Bhattacharjee J. K. 1998; A unique fungal lysine biosynthesis enzyme shares a common ancestor with tricarboxylic acid cycle and leucine biosynthetic enzymes found in diverse organisms. J Mol Evol 46:401–408
    [Google Scholar]
  32. Jaklitsch W. M., Hampel W., Röhr M., Kubicek C. P. 1986; α-Aminoadipate pool concentration and penicillin biosynthesis in strains of Penicillium chrysogenum . Can J Microbiol 32:473–480
    [Google Scholar]
  33. Jia Y., Tomita T., Yamauchi K., Nishiyama M., Palmer D. R. 2006; Kinetics and product analysis of the reaction catalysed by recombinant homoaconitase from Thermus thermophilus . Biochem J 396:479–485
    [Google Scholar]
  34. Kobashi N., Nishiyama M., Tanokura M. 1999; Aspartate kinase-independent lysine synthesis in an extremely thermophilic bacterium, Thermus thermophilus: lysine is synthesized via alpha-aminoadipic acid not via diaminopimelic acid. J Bacteriol 181:1713–1718
    [Google Scholar]
  35. Kosalková K., García-Estrada C., Ullán R. V., Godio R. P., Feltrer R., Teijeira F., Mauriz E., Martín J. F. 2009; The global regulator LaeA controls penicillin biosynthesis, pigmentation and sporulation, but not roquefortine C synthesis in Penicillium chrysogenum . Biochimie 91:214–225
    [Google Scholar]
  36. Kosuge T., Hoshino T. 1998; Lysine is synthesized through the alpha-aminoadipate pathway in Thermus thermophilus . FEMS Microbiol Lett 169:361–367
    [Google Scholar]
  37. Lu Y., Mach R. L., Affenzeller K., Kubicek C. P. 1992; Regulation of α-aminoadipate reductase from Penicillium chrysogenum in relation to the flux from α-aminoadipate into penicillin biosynthesis. Can J Microbiol 38:758–763
    [Google Scholar]
  38. Luengo J. M., Revilla G., López M. J., Villanueva J. R., Martín J. F. 1979; Lysine regulation of penicillin biosynthesis in low-producing and industrial strains of Penicillium chrysogenum . J Gen Microbiol 115:207–211
    [Google Scholar]
  39. Luengo J. M., Revilla G., López M. J., Villanueva J. R., Martín J. F. 1980; Inhibition and repression of homocitrate synthase by lysine in Penicillium chrysogenum . J Bacteriol 144:869–876
    [Google Scholar]
  40. Martín J. F. 2000; α-Aminoadipyl-cysteinyl-valine synthetases in β-lactam producing organisms. From Abraham's discoveries to novel concepts of non-ribosomal peptide synthesis. J Antibiot (Tokyo 53:1008–1021
    [Google Scholar]
  41. Masurekar P. S., Kahgan M. P., Demain A. L. 1972; Mutagenesis and enrichment of auxotrophs in Penicillium chrysogenum . Appl Microbiol 24:995–996
    [Google Scholar]
  42. Naranjo L., Martín de Valmaseda E., Bañuelos O., López P., Riaño J., Martín J. F., Casqueiro J. 2001; Conversion of pipecolic acid into lysine in Penicillium chrysogenum requires pipecolate oxidase and saccharopine reductase: characterization of the lys7 gene encoding saccharopine reductase. J Bacteriol 183:7165–7172
    [Google Scholar]
  43. Philpott C. C., Haile D., Rouault T. A., Klauser R. D. 1993; Modification of a free Fe-S cluster cysteine residue in the active iron-responsive element binding protein prevents RNA binding. J Biol Chem 268:17655–17658
    [Google Scholar]
  44. Ramos F., Dubois E., Piérard A. 1988; Control of enzyme synthesis in the lysine biosynthetic pathway of Saccharomyces cerevisiae. Evidence for a regulatory role of gene LYS14 . Eur J Biochem 171:171–176
    [Google Scholar]
  45. Robbins A. H., Stout C. D. 1989; Structure of activated aconitases: formation of the [4Fe-4S] cluster in the crystal. Proc Natl Acad Sci U S A 86:3639–3643
    [Google Scholar]
  46. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  47. Theilgaard H. B., Kristiansen K. N., Henriksen C. M., Nielsen J. 1997; Purification and characterization of δ-(l- α-aminoadipyl)-l-cysteinyl-d-valine synthetase from Penicillium chrysogenum . Biochem J 327:185–191
    [Google Scholar]
  48. van den Berg M. A., Albang R., Albermann K., Badger J. H., Daran J. M., Driessen A. J., Garcia-Estrada C., Fedorova N. D., Harris D. M. other authors 2008; Genome sequencing and analysis of the filamentous fungus Penicillium chrysogenum . Nat Biotechnol 26:1161–1168
    [Google Scholar]
  49. Weidner G., Steffan B., Brakhage A. A. 1997; The Aspergillus nidulans lysF gene, an enzyme involved in the fungus-specific lysine biosynthetic pathway. Mol Gen Genet 255:237–245
    [Google Scholar]
  50. Xu H., Andi B., Qian J., West A. H., Cook P. F. 2006; The alpha-aminoadipate pathway for lysine biosynthesis in fungi. Cell Biochem Biophys 46:43–64
    [Google Scholar]
  51. Zabriskie T. M., Jackson M. D. 2000; Lysine biosynthesis and metabolism in fungi. Nat Prod Rep 17:85–97
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.031005-0
Loading
/content/journal/micro/10.1099/mic.0.031005-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error