1887

Abstract

PvdQ, an acylase from PAO1, has been shown to have at least two functions. It can act as a quorum quencher due to its ability to degrade long-chain -acylhomoserine lactones (AHLs), e.g. 3-oxo-C12-HSL, leading to a decrease in virulence factors. In addition, PvdQ is involved in iron homeostasis by playing a role in the biosynthesis of pyoverdine, the major siderophore of . In accordance with earlier studies on RNA level, we could show at the protein level that PvdQ is only expressed when iron is present at very low concentrations. We therefore set out to investigate the two functions of PvdQ under iron-limiting conditions. Gene deletion of does not affect growth of but abrogates pyoverdine production, and results in an accumulation of 3-oxo-C12-HSL. Phenotypic analyses of our Δ mutant at low iron concentrations revealed that this mutant is impaired in swarming motility and biofilm formation. Additionally, a plant and a infection model demonstrated that the deletion of resulted in reduced virulence. None of the phenotypes in the present study could be linked to the presence or absence of AHLs. These results clearly indicate that under iron-limiting conditions PvdQ plays a major role in swarming motility, in biofilm development and in infection that is more likely to be linked to the pyoverdine pathway rather than the LasI/LasR/3-oxo-C12-HSL quorum-sensing circuit.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.030973-0
2010-01-01
2020-03-31
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/1/49.html?itemId=/content/journal/micro/10.1099/mic.0.030973-0&mimeType=html&fmt=ahah

References

  1. Alm R. A., Mattick J. S.. 1995; Identification of a gene, pilV, required for type 4 fimbrial biogenesis in Pseudomonas aeruginosa, whose product possesses a pre-pilin-like leader sequence. Mol Microbiol16:485–496
    [Google Scholar]
  2. Banin E., Vasil M. L., Greenberg E. P.. 2005; Iron and Pseudomonas aeruginosa biofilm formation. Proc Natl Acad Sci U S A102:11076–11081
    [Google Scholar]
  3. Beare P. A., For R. J., Martin L. W., Lamont I. L.. 2003; Siderophore-mediated cell signalling in Pseudomonas aeruginosa: divergent pathways regulate virulence factor production and siderophore receptor synthesis. Mol Microbiol47:195–207
    [Google Scholar]
  4. Braun V., Hantke K.. 1997; Receptor-mediated bacterial iron transport. In Transition Metals in Microbial Metabolism pp81–101 Edited by Winkelmann G., Carrano C. J.. Amsterdam: Harwood Academic Publishers;
  5. Brenner S.. 1974; The genetics of Caenorhabditis elegans. Genetics77:71–94
    [Google Scholar]
  6. Caiazza N. C., Shanks R. M., O'Toole G. A.. 2005; Rhamnolipids modulate swarming motility patterns of Pseudomonas aeruginosa. J Bacteriol187:7351–7361
    [Google Scholar]
  7. Caiazza N. C., Merritt J. H., Brothers K. M., O'Toole G. A.. 2007; Inverse regulation of biofilm formation and swarming motility by Pseudomonas aeruginosa PA14. J Bacteriol189:3603–3612
    [Google Scholar]
  8. Carpenter B. M., Whitmire J. M., Merrell D. S.. 2009; This is not your mother's repressor: the complex role of fur in pathogenesis. Infect Immun77:2590–2601
    [Google Scholar]
  9. Choi K. H., Kumar A., Schweizer H. P.. 2006; A 10-min method for preparation of highly electrocompetent Pseudomonas aeruginosa cells: application for DNA fragment transfer between chromosomes and plasmid transformation. J Microbiol Methods64:391–397
    [Google Scholar]
  10. Christensen G. D., Simpson W. A., Younger J. J., Baddour L. M., Barrett F. F., Melton D. M., Beachey E. H.. 1985; Adherence of coagulase-negative staphylococci to plastic tissue culture plates: a quantitative model for the adherence of staphylococci to medical devices. J Clin Microbiol22:996–1006
    [Google Scholar]
  11. Cox C. D., Adams P.. 1985; Siderophore activity of pyoverdin for Pseudomonas aeruginosa. Infect Immun48:130–138
    [Google Scholar]
  12. Cox C. D., Rinehart K. L. Jr, Moore M. L., Cook J. C. Jr. 1981; Pyochelin: novel structure of an iron-chelating growth promoter for Pseudomonas aeruginosa. Proc Natl Acad Sci U S A78:4256–4260
    [Google Scholar]
  13. Cunliffe H. E., Merriman T. R., Lamont I. L.. 1995; Cloning and characterization of pvdS, a gene required for pyoverdine synthesis in Pseudomonas aeruginosa: PvdS is probably an alternative sigma factor. J Bacteriol177:2744–2750
    [Google Scholar]
  14. Deziel E., Lepine F., Milot S., Villemur R.. 2003; rhlA is required for the production of a novel biosurfactant promoting swarming motility in Pseudomonas aeruginosa: 3-(3-hydroxyalkanoyloxy)alkanoic acids (HAAs), the precursors of rhamnolipids. Microbiology149:2005–2013
    [Google Scholar]
  15. Escolar L., Perez-Martin J., de Lorenzo V.. 1999; Opening the iron box: transcriptional metalloregulation by the Fur protein. J Bacteriol181:6223–6229
    [Google Scholar]
  16. Freestone P. P., Lyte M., Neal C. P., Maggs A. F., Haigh R. D., Williams P. H.. 2000; The mammalian neuroendocrine hormone norepinephrine supplies iron for bacterial growth in the presence of transferrin or lactoferrin. J Bacteriol182:6091–6098
    [Google Scholar]
  17. Freestone P. P., Williams P. H., Haigh R. D., Maggs A. F., Neal C. P., Lyte M.. 2002; Growth stimulation of intestinal commensal Escherichia coli by catecholamines: a possible contributory factor in trauma-induced sepsis. Shock18:465–470
    [Google Scholar]
  18. Freestone P. P., Haigh R. D., Williams P. H., Lyte M.. 2003; Involvement of enterobactin in norepinephrine-mediated iron supply from transferrin to enterohaemorrhagic Escherichia coli. FEMS Microbiol Lett222:39–43
    [Google Scholar]
  19. Heeb S., Blumer C., Haas D.. 2002; Regulatory RNA as mediator in GacA/RsmA-dependent global control of exoproduct formation in Pseudomonas fluorescens CHA0. J Bacteriol184:1046–1056
    [Google Scholar]
  20. Hentzer M., Eberl L., Givskov M.. 2005; Transcriptome analysis of Pseudomonas aeruginosa biofilm development: anaerobic respiration and iron limitation. Biofilms2:37–61
    [Google Scholar]
  21. Hoang T. T., Karkhoff-Schweizer R. R., Kutchma A. J., Schweizer H. P.. 1998; A broad-host-range Flp-FRT recombination system for site-specific excision of chromosomally-located DNA sequences: application for isolation of unmarked Pseudomonas aeruginosa mutants. Gene212:77–86
    [Google Scholar]
  22. Holder I. A.. 1993; Pseudomonas aeruginosa burn infections: pathogenesis and treatment. In Pseudomonas aeruginosa as an Opportunistic Pathogen pp275–295 Edited by Campa M., Bendinelli M., Friedman H.. New York: Plenum Press;
  23. Horton R. M., Hunt H. D., Ho S. N., Pullen J. K., Pease L. R.. 1989; Engineering hybrid genes without the use of restriction enzymes: gene splicing by overlap extension. Gene77:61–68
    [Google Scholar]
  24. Huang J. J., Han J. I., Zhang L. H., Leadbetter J. R.. 2003; Utilization of acyl-homoserine lactone quorum signals for growth by a soil pseudomonad and Pseudomonas aeruginosa PAO1. Appl Environ Microbiol69:5941–5949
    [Google Scholar]
  25. Koedam N., Wittouck E., Gaballa A., Gillis A., Hofte M., Cornelis P.. 1994; Detection and differentiation of microbial siderophores by isoelectric focusing and chrome azurol S overlay. Biometals7:287–291
    [Google Scholar]
  26. Kohler T., Curty L. K., Barja F., van Delden C., Pechere J. C.. 2000; Swarming of Pseudomonas aeruginosa is dependent on cell-to-cell signaling and requires flagella and pili. J Bacteriol182:5990–5996
    [Google Scholar]
  27. Lamont I. L., Martin L. W.. 2003; Identification and characterization of novel pyoverdine synthesis genes in Pseudomonas aeruginosa. Microbiology149:833–842
    [Google Scholar]
  28. Lamont I. L., Beare P. A., Ochsner U., Vasil A. I., Vasil M. L.. 2002; Siderophore-mediated signaling regulates virulence factor production in Pseudomonas aeruginosa. Proc Natl Acad Sci U S A99:7072–7077
    [Google Scholar]
  29. Lee D. G., Urbach J. M., Wu G., Liberati N. T., Feinbaum R. L., Miyata S., Diggins L. T., He J., Saucier M.. other authors 2006; Genomic analysis reveals that Pseudomonas aeruginosa virulence is combinatorial. Genome Biol7:R90
    [Google Scholar]
  30. Liberati N. T., Urbach J. M., Miyata S., Lee D. G., Drenkard E., Wu G., Villanueva J., Wei T., Ausubel F. M.. 2006; An ordered, nonredundant library of Pseudomonas aeruginosa strain PA14 transposon insertion mutants. Proc Natl Acad Sci U S A103:2833–2838
    [Google Scholar]
  31. Matilla M. A., Ramos J. L., Duque E., de Dios A. J., Espinosa-Urgel M., Ramos-Gonzalez M. I.. 2007; Temperature and pyoverdine-mediated iron acquisition control surface motility of Pseudomonas putida. Environ Microbiol9:1842–1850
    [Google Scholar]
  32. Meyer J. M.. 2000; Pyoverdines: pigments, siderophores and potential taxonomic markers of fluorescent Pseudomonas species. Arch Microbiol174:135–142
    [Google Scholar]
  33. Meyer J. M., Neely A., Stintzi A., Georges C., Holder I. A.. 1996; Pyoverdin is essential for virulence of Pseudomonas aeruginosa. Infect Immun64:518–523
    [Google Scholar]
  34. Miethke M., Marahiel M. A.. 2007; Siderophore-based iron acquisition and pathogen control. Microbiol Mol Biol Rev71:413–451
    [Google Scholar]
  35. Miyazaki H., Kato H., Nakazawa T., Tsuda M.. 1995; A positive regulatory gene, pvdS, for expression of pyoverdin biosynthetic genes in Pseudomonas aeruginosa PAO. Mol Gen Genet248:17–24
    [Google Scholar]
  36. Neilands J. B.. 1990; Molecular aspects of regulation of high affinity iron absorption in microorganisms. Adv Inorg Biochem8:63–90
    [Google Scholar]
  37. Neilands J. B.. 1993; Siderophores. Arch Biochem Biophys302:1–3
    [Google Scholar]
  38. Neilands J. B.. 1995; Siderophores: structure and function of microbial iron transport compounds. J Biol Chem270:26723–26726
    [Google Scholar]
  39. Ochsner U. A., Vasil A. I., Vasil M. L.. 1995; Role of the ferric uptake regulator of Pseudomonas aeruginosa in the regulation of siderophores and exotoxin A expression: purification and activity on iron-regulated promoters. J Bacteriol177:7194–7201
    [Google Scholar]
  40. Ochsner U. A., Wilderman P. J., Vasil A. I., Vasil M. L.. 2002; GeneChip expression analysis of the iron starvation response in Pseudomonas aeruginosa: identification of novel pyoverdine biosynthesis genes. Mol Microbiol45:1277–1287
    [Google Scholar]
  41. Overhage J., Lewenza S., Marr A. K., Hancock R. E.. 2007; Identification of genes involved in swarming motility using a Pseudomonas aeruginosa PAO1 mini-Tn 5- lux mutant library. J Bacteriol189:2164–2169
    [Google Scholar]
  42. Overhage J., Bains M., Brazas M. D., Hancock R. E.. 2008; Swarming of Pseudomonas aeruginosa is a complex adaptation leading to increased production of virulence factors and antibiotic resistance. J Bacteriol190:2671–2679
    [Google Scholar]
  43. Papaioannou E., Wahjudi M., Nadal Jimenez P., Koch G., Setroikromo R., Quax W. J.. 2009; Quorum quenching acylase reduces the virulence of Pseudomonas aeruginosa in a Caenorhabditis elegans infection model. Antimicrob Agents Chemother53:4891–4897
    [Google Scholar]
  44. Patriquin G. M., Banin E., Gilmour C., Tuchman R., Greenberg E. P., Poole K.. 2008; Influence of quorum sensing and iron on twitching motility and biofilm formation in Pseudomonas aeruginosa. J Bacteriol190:662–671
    [Google Scholar]
  45. Peeters E., Nelis H. J., Coenye T.. 2008; Comparison of multiple methods for quantification of microbial biofilms grown in microtiter plates. J Microbiol Methods72:157–165
    [Google Scholar]
  46. Poole K., Dean C., Heinrichs D., Neshat S., Krebs K., Young L., Kilburn L.. 1996; Siderophore-mediated iron transport in Pseudomonas aeruginosa. In Molecular Biology of Pseudomonas pp371–373 Edited by Nakazawa T. Washington, DC: American Society for Microbiology;
  47. Prince R. W., Storey D. G., Vasil A. I., Vasil M. L.. 1991; Regulation of toxA and regA by the Escherichia coli fur gene and identification of a Fur homologue in Pseudomonas aeruginosa PA103 and PA01. Mol Microbiol5:2823–2831
    [Google Scholar]
  48. Prince R. W., Cox C. D., Vasil M. L.. 1993; Coordinate regulation of siderophore and exotoxin A production: molecular cloning and sequencing of the Pseudomonas aeruginosa fur gene. J Bacteriol175:2589–2598
    [Google Scholar]
  49. Rashid M. H., Kornberg A.. 2000; Inorganic polyphosphate is needed for swimming, swarming, and twitching motilities of Pseudomonas aeruginosa. Proc Natl Acad Sci U S A97:4885–4890
    [Google Scholar]
  50. Sambrook J., Fritsch E. F., Maniatis T.. 2001; Molecular Cloning: a Laboratory Manual Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
  51. Schweizer H. P.. 1991; The agmR gene, an environmentally responsive gene, complements defective glpR, which encodes the putative activator for glycerol metabolism in Pseudomonas aeruginosa. J Bacteriol173:6798–6806
    [Google Scholar]
  52. Shrout J. D., Chopp D. L., Just C. L., Hentzer M., Givskov M., Parsek M. R.. 2006; The impact of quorum sensing and swarming motility on Pseudomonas aeruginosa biofilm formation is nutritionally conditional. Mol Microbiol62:1264–1277
    [Google Scholar]
  53. Simon R., Priefer U., Puehler A.. 1983; A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in gram negative bacteria. Biotechnology1:784–791
    [Google Scholar]
  54. Singh P. K.. 2004; Iron sequestration by human lactoferrin stimulates P. aeruginosa surface motility and blocks biofilm formation. Biometals17:267–270
    [Google Scholar]
  55. Singh P. K., Schaefer A. L., Parsek M. R., Moninger T. O., Welsh M. J., Greenberg E. P.. 2000; Quorum-sensing signals indicate that cystic fibrosis lungs are infected with bacterial biofilms. Nature407:762–764
    [Google Scholar]
  56. Singh P. K., Parsek M. R., Greenberg E. P., Welsh M. J.. 2002; A component of innate immunity prevents bacterial biofilm development. Nature417:552–555
    [Google Scholar]
  57. Sio C. F., Quax W. J.. 2004; Improved beta-lactam acylases and their use as industrial biocatalysts. Curr Opin Biotechnol15:349–355
    [Google Scholar]
  58. Sio C. F., Otten L. G., Cool R. H., Diggle S. P., Braun P. G., Bos R., Daykin M., Camara M., Williams P., Quax W. J.. 2006; Quorum quenching by an N-acyl-homoserine lactone acylase from Pseudomonas aeruginosa PAO1. Infect Immun74:1673–1682
    [Google Scholar]
  59. Vasil M. L., Ochsner U. A.. 1999; The response of Pseudomonas aeruginosa to iron: genetics, biochemistry and virulence. Mol Microbiol34:399–413
    [Google Scholar]
  60. Visca P., Leoni L., Wilson M. J., Lamont I. L.. 2002; Iron transport and regulation, cell signalling and genomics: lessons from Escherichia coli and Pseudomonas. Mol Microbiol45:1177–1190
    [Google Scholar]
  61. Wendenbaum S., Demange P., Dell A., Meyer J. M., Abdallah M. A.. 1983; The structure of pyoverdinePa, the siderophore of Pseudomonas aeruginosa. Tetrahedron Lett24:4877–4880
    [Google Scholar]
  62. Wilhelm S., Gdynia A., Tielen P., Rosenau F., Jaeger K. E.. 2007; The autotransporter esterase EstA of Pseudomonas aeruginosa is required for rhamnolipid production, cell motility, and biofilm formation. J Bacteriol189:6695–6703
    [Google Scholar]
  63. Winson M. K., Swift S., Fish L., Throup J. P., Jorgensen F., Chhabra S. R., Bycroft B. W., Williams P., Stewart G. S.. 1998; Construction and analysis of luxCDABE-based plasmid sensors for investigating N-acyl homoserine lactone-mediated quorum sensing. FEMS Microbiol Lett163:185–192
    [Google Scholar]
  64. Yang L., Barken K. B., Skindersoe M. E., Christensen A. B., Givskov M., Tolker-Nielsen T.. 2007; Effects of iron on DNA release and biofilm development by Pseudomonas aeruginosa. Microbiology153:1318–1328
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.030973-0
Loading
/content/journal/micro/10.1099/mic.0.030973-0
Loading

Data & Media loading...

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error