Identification and characterization of a family of toxin–antitoxin systems related to the plasmid pAD1 addiction module Free

Abstract

The locus of the plasmid pAD1 is an RNA-regulated addiction module encoding the peptide toxin Fst. Homology searches revealed that Fst belongs to a family of at least nine related peptides encoded on the chromosomes and plasmids of six different Gram-positive bacterial species. Comparison of an alignment of these peptides with the results of a saturation mutagenesis analysis indicated regions of the peptides important for biological function. Examination of the genetic context of the genes revealed that all of these peptides are encoded within -like loci with conserved features similar to pAD1 . All four family members were demonstrated to produce the expected toxin-encoding and regulatory RNA products. The locus from the plasmid pAMS1 was demonstrated to function as an addiction module and Fst was shown to be toxic to , suggesting that a plasmid-encoded module in that species is performing the same function. Thus, the pAD1-encoded locus appears to be the prototype of a family of related loci found in several Gram-positive species.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.030932-0
2009-09-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/9/2930.html?itemId=/content/journal/micro/10.1099/mic.0.030932-0&mimeType=html&fmt=ahah

References

  1. Alix E., Blanc-Potard A.-B. 2009; Hydrophobic peptides: novel regulators within bacterial membrane. Mol Microbiol 72:5–11
    [Google Scholar]
  2. Bahassi E. M., O'Dea M. H., Allali N., Messens J., Gellert M., Couturier M. 1999; Interactions of CcdB with DNA gyrase. Inactivation of GyrA, poisoning of the gyrase–DNA complex, and the antidote action of CcdA. J Biol Chem 274:10936–10944
    [Google Scholar]
  3. Bourgogne A., Garsin D., Qin X., Singh K., Sillanpaa J., Yerrapragada S., Ding Y., Dugan-Rocha S., Buhay C. other authors 2008; Large scale variation in Enterococcus faecalis illustrated by the genome analysis of strain OG1RF. Genome Biol 9:R110
    [Google Scholar]
  4. Bryan E. M., Bae T., Kleerebezem M., Dunny G. M. 2000; Improved vectors for nisin-controlled expression in Gram-positive bacteria. Plasmid 44:183–190
    [Google Scholar]
  5. Buts L., Lah J., Dao-Thi M.-H., Wyns L., Loris R. 2005; Toxin–antitoxin modules as bacterial metabolic stress managers. Trends Biochem Sci 30:672–679
    [Google Scholar]
  6. Charpentier E., Anton A. I., Barry P., Alfonso B., Fang Y., Novick R. P. 2004; Novel cassette-based shuttle vector system for Gram-positive bacteria. Appl Environ Microbiol 70:6076–6085
    [Google Scholar]
  7. Condon C. 2006; Shutdown decay of mRNA. Mol Microbiol 61:573–583
    [Google Scholar]
  8. Cuozzo S. A., Sesma F., Palacios J. M., de Ruíz Holgado A. P., Raya R. R. 2000; Identification and nucleotide sequence of genes involved in the synthesis of lactocin 705, a two-peptide bacteriocin from Lactobacillus casei CRL 705. FEMS Microbiol Lett 185:157–161
    [Google Scholar]
  9. Dyer D. W., Iandolo J. J. 1983; Rapid isolation of DNA from Staphylococcus aureus . Appl Environ Microbiol 46:283–285
    [Google Scholar]
  10. Engelberg-Kulka H., Amitai S., Kolodkin-Gal I., Hazan R. 2006; Bacterial programmed cell death and multicellular behavior in bacteria. PLoS Genet 2:e135
    [Google Scholar]
  11. Flannagan S. E., Clewell D. B., Sedgley C. M. 2008; A “retrocidal” plasmid in Enterococcus faecalis: passage and protection. Plasmid 59:217–230
    [Google Scholar]
  12. Fozo E. M., Hemm M. R., Storz G. 2008; Small toxic proteins and the antisense RNAs that repress them. Microbiol Mol Biol Rev 72:579–589
    [Google Scholar]
  13. Franch T., Petersen M., Wagner E. G. H., Jacobsen J. P., Gerdes K. 1999; Antisense RNA regulation in prokaryotes: rapid RNA/RNA interaction facilitated by a general U-turn loop structure. J Mol Biol 294:1115–1125
    [Google Scholar]
  14. Gerdes K., Wagner E. G. H. 2007; RNA antitoxins. Curr Opin Microbiol 10:117–124
    [Google Scholar]
  15. Gerdes K., Bech F. W., Jorgensen S. T., Lobner-Olesen A., Rasmussen P. B., Atlung T., Boe L., Karlstrom O., Molin S., von Meyenburg K. 1986; Mechanism of postsegregational killing by the hok gene product of the parB system of plasmid R1 and its homology with the relF gene product of the E. coli relB operon. EMBO J 5:2023–2029
    [Google Scholar]
  16. Gerdes K., Thisted T., Martinussen J. 1990; Mechanism of post-segregational killing by the hok/ sok system of plasmid R1: sok antisense RNA regulates formation of a hok mRNA species correlated with killing of plasmid-free cells. Mol Microbiol 4:1807–1818
    [Google Scholar]
  17. Gerdes K., Christensen S. K., Lobner-Olesen A. 2005; Prokaryotic toxin–antitoxin stress response loci. Nat Rev Microbiol 3:371–382
    [Google Scholar]
  18. Gillaspy A. F., Hickmon S. G., Skinner R. A., Thomas J. R., Nelson C. L., Smeltzer M. S. 1995; Role of the accessory gene regulator ( agr) in pathogenesis of staphylococcal osteomyelitis. Infect Immun 63:3373–3380
    [Google Scholar]
  19. Greenfield T. J., Weaver K. E. 2000; Antisense RNA regulation of the pAD1 par post-segregational killing system requires interaction at the 5′ and 3′ ends of the RNAs. Mol Microbiol 37:661–670
    [Google Scholar]
  20. Greenfield T. J., Ehli E., Kirshenmann T., Franch T., Gerdes K., Weaver K. E. 2000; The antisense RNA of the par locus of pAD1 regulates the expression of a 33-amino-acid toxic peptide by an unusual mechanism. Mol Microbiol 37:652–660
    [Google Scholar]
  21. Greenfield T. J., Franch T., Gerdes K., Weaver K. E. 2001; Antisense RNA regulation of the par post-segregational killing system: structural analysis and mechanism of binding of the antisense RNA, RNAII and its target, RNAI. Mol Microbiol 42:527–537
    [Google Scholar]
  22. Hayes F. 2003; Toxins–antitoxins: plasmid maintenance, programmed cell death, and cell cycle arrest. Science 301:1496–1499
    [Google Scholar]
  23. Ibrahim M., Nicolas P., Bessieres P., Bolotin A., Monnet V., Gardan R. 2007; A genome-wide survey of short coding sequences in streptococci. Microbiology 153:3631–3644
    [Google Scholar]
  24. Ike Y., Craig R. A., White B. A., Yagi Y., Clewell D. B. 1983; Modification of Streptococcus faecalis sex pheromones after acquisition of plasmid DNA. Proc Natl Acad Sci U S A 80:5369–5373
    [Google Scholar]
  25. Jiang Y., Pogliano J., Helinski D. R., Konieczny I. 2002; ParE toxin encoded by the broad-host-range plasmid RK2 is an inhibitor of Escherichia coli gyrase. Mol Microbiol 44:971–979
    [Google Scholar]
  26. Kawano M., Oshima T., Kasai H., Mori H. 2002; Molecular characterization of long direct repeat (LDR) sequences expressing a stable mRNA encoding for a 35-amino-acid cell-killing peptide and a cis-encoded small antisense RNA in Escherichia coli . Mol Microbiol 45:333–349
    [Google Scholar]
  27. Kreiswirth B. N., Lofdahl S., Betley M. J., O'Reilly M., Schlievert P. M., Bergdoll M. S., Novick R. P. 1983; The toxic shock syndrome exotoxin structural gene is not detectably transmitted by a prophage. Nature 305:709–712
    [Google Scholar]
  28. Kuroda M., Ohta T., Uchiyama I., Baba T., Yuzawa H., Kobayashi I., Cui L., Oguchi A., Aoki K. other authors 2001; Whole genome sequencing of meticillin-resistant Staphylococcus aureus . Lancet 357:1225–1240
    [Google Scholar]
  29. Kuroda M., Yamashita A., Hirakawa H., Kumano M., Morikawa K., Higashide M., Maruyama A., Inose Y., Matoba K. other authors 2005; Whole genome sequence of Staphylococcus saprophyticus reveals the pathogenesis of uncomplicated urinary tract infection. Proc Natl Acad Sci U S A 102:13272–13277
    [Google Scholar]
  30. Makarova K., Slesarev A., Wolf Y., Sorokin A., Mirkin B., Koonin E., Pavlov A., Pavlova N., Karamychev V. other authors 2006; Comparative genomics of the lactic acid bacteria. Proc Natl Acad Sci U S A 103:15611–15616
    [Google Scholar]
  31. Moritz E. M., Hergenrother P. J. 2007; Toxin–antitoxin systems are ubiquitous and plasmid-encoded in vancomycin-resistant enterococci. Proc Natl Acad Sci U S A 104:311–316
    [Google Scholar]
  32. Oliver D. R., Brown B. L., Clewell D. B. 1977; Analysis of plasmid deoxyribonucleic acid in a cariogenic strain of Streptococcus faecalis: an approach to identifying genetic determinants on cryptic plasmids. J Bacteriol 130:759–765
    [Google Scholar]
  33. Patel S., Weaver K. E. 2006; Addiction toxin Fst has unique effects on chromosome segregation and cell division in Enterococcus faecalis and Bacillus subtilis . J Bacteriol 188:5374–5384
    [Google Scholar]
  34. Paulsen I. T., Banerjei L., Myers G. S. A., Nelson K. E., Seshadri R., Read T. D., Fouts D. E., Eisen J. A., Gill S. R. other authors 2003; Role of mobile DNA in the evolution of vancomycin-resistant Enterococcus faecalis . Science 299:2071–2074
    [Google Scholar]
  35. Schenk S., Laddaga R. A. 1992; Improved method for electroporation of Staphylococcus aureus . FEMS Microbiol Lett 73:133–138
    [Google Scholar]
  36. Shokeen S., Patel S., Greenfield T. J., Brinkman C., Weaver K. E. 2008; Translational regulation by an intramolecular stem–loop is required for intermolecular RNA regulation of the par addiction module. J Bacteriol 190:6076–6083
    [Google Scholar]
  37. Shokeen S., Greenfield T. J., Ehli E. A., Rasmussen J., Perrault B. E., Weaver K. E. 2009; An intramolecular upstream helix ensures the stability of a toxin-encoding RNA in Enterococcus faecalis . J Bacteriol 191:1528–1536
    [Google Scholar]
  38. Van Melderen L., Saavedra De Bast M. 2009; Bacterial toxin–antitoxin systems: more than selfish entities?. PLoS Genet 5:e1000437
    [Google Scholar]
  39. Weaver K. E., Jensen K. D., Colwell A., Sriram S. I. 1996; Functional analysis of the Enterococcus faecalis plasmid pAD1-encoded stability determinant par . Mol Microbiol 20:53–63
    [Google Scholar]
  40. Weaver K. E., Weaver D. M., Wells C. L., Waters C. M., Gardner M. E., Ehli E. A. 2003; Enterococcus faecalis plasmid pAD1-encoded Fst toxin affects membrane permeability and alters cellular responses to lantibiotics. J Bacteriol 185:2169–2177
    [Google Scholar]
  41. Weaver K. E., Ehli E. A., Nelson J. S., Patel S. 2004; Antisense RNA regulation by stable complex formation in the Enterococcus faecalis plasmid pAD1 par addiction system. J Bacteriol 186:6400–6408
    [Google Scholar]
  42. Weaver K. E., Kwong S. M., Firth N., Francia M. V. 2009; The RepA_N replicons of Gram-positive bacteria: a family of broadly distributed but narrow host range plasmids. Plasmid 61:94–109
    [Google Scholar]
  43. Wirth R. F., Clewell D. B. 1987; Highly efficient cloning system for Streptococcus faecalis protoplast transformation, shuttle vectors, and applications. In Streptococcal Genetics pp 25–27 Edited by Curtis R. III Washington, DC: American Society for Microbiology;
    [Google Scholar]
  44. Yokoi K.-J., Shinohara M., Kawahigashi N., Nakagawa K., Kawasaki K.-I., Nakamura S., Taketo A., Kodaira K.-I. 2005; Molecular properties of the two-component cell lysis system encoded by prophage φgaY of Lactobacillus gasseri JCM 1131T: cloning, sequencing, and expression in Escherichia coli . Int J Food Microbiol 99:297–308
    [Google Scholar]
  45. Zhang J., Zhang Y., Zhu L., Suzuki M., Inouye M. 2004; Interference of mRNA function by sequence-specific endoribonuclease PemK. J Biol Chem 279:20678–20684
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.030932-0
Loading
/content/journal/micro/10.1099/mic.0.030932-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited Most Cited RSS feed