1887

Abstract

The glyoxylate cycle is an anaplerotic pathway of the tricarboxylic acid (TCA) cycle that allows growth on C compounds by bypassing the CO-generating steps of the TCA cycle. The unique enzymes of this route are isocitrate lyase (ICL) and malate synthase (MS). ICL cleaves isocitrate to glyoxylate and succinate, and MS converts glyoxylate and acetyl-CoA to malate. The end products of the bypass can be used for gluconeogenesis and other biosynthetic processes. The glyoxylate cycle occurs in Eukarya, Bacteria and Archaea. Recent studies of ICL- and MS-deficient strains as well as proteomic and transcriptional analyses show that these enzymes are often important in human, animal and plant pathogenesis. These studies have extended our understanding of the metabolic pathways essential for the survival of pathogens inside the host and provide a more complete picture of the physiology of pathogenic micro-organisms. Hopefully, the recent knowledge generated about the role of the glyoxylate cycle in virulence can be used for the development of new vaccines, or specific inhibitors to combat bacterial and fungal diseases.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.030858-0
2009-10-01
2019-08-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/10/3166.html?itemId=/content/journal/micro/10.1099/mic.0.030858-0&mimeType=html&fmt=ahah

References

  1. Achkar, J. M., Dong, Y., Holzman, R. S., Belisle, J., Kourbeti, I. S., Sherpa, T., Condos, R., Rom, W. N. & Laal, S. ( 2006; ). Mycobacterium tuberculosis malate synthase- and MPT51-based serodiagnostic assay as an adjunct to rapid identification of pulmonary tuberculosis. Clin Vaccine Immunol 13, 1291–1293.[CrossRef]
    [Google Scholar]
  2. Ajl, S. J. ( 1956; ). Conversion of acetate and glyoxylate to malate. J Am Chem Soc 78, 3230–3231.[CrossRef]
    [Google Scholar]
  3. Alston, T. A., Mela, L. & Bright, H. J. ( 1977; ). 3-Nitropropionate, the toxic substance of Indigofera, is a suicide inactivator of succinate dehydrogenase. Proc Natl Acad Sci U S A 74, 3767–3771.[CrossRef]
    [Google Scholar]
  4. Anstrom, D. M., Kallio, K. & Remington, S. J. ( 2003; ). Structure of the Escherichia coli malate synthase G : pyruvate : acetyl-coenzyme A abortive ternary complex at 1.95 Å resolution. Protein Sci 12, 1822–1832.[CrossRef]
    [Google Scholar]
  5. Asakura, M., Okuno, T. & Takano, Y. ( 2006; ). Multiple contributions of peroxisomal metabolic function to fungal pathogenicity in Colletotrichum lagenarium. Appl Environ Microbiol 72, 6345–6354.[CrossRef]
    [Google Scholar]
  6. Bai, B., Xie, J.-P., Yan, J.-F., Wang, H.-H. & Hu, C.-H. ( 2007; ). A high throughput screening approach to identify isocitrate lyase inhibitors from traditional Chinese medicine sources. Drug Dev Res 67, 818–823.
    [Google Scholar]
  7. Barelle, C. J., Priest, C. L., Maccallum, D. M., Gow, N. A., Odds, F. C. & Brown, A. J. ( 2006; ). Niche-specific regulation of central metabolic pathways in a fungal pathogen. Cell Microbiol 8, 961–971.[CrossRef]
    [Google Scholar]
  8. Britton, K. L., Langridge, S., Baker, P. J., Weeradechapon, K., Sedelnikova, S. E., De Lucas, J. R., Rice, D. W. & Turner, G. ( 2000; ). The crystal structure and active site location of isocitrate lyase from the fungus Aspergillus nidulans. Structure 8, 349–362.[CrossRef]
    [Google Scholar]
  9. Britton, K. L., Abeysinghe, I. S. B., Baker, P. J., Barynin, V., Diehl, P., Langridge, S. J., McFadden, B. A., Sedelnikova, S. E., Stillman, T. J. & other authors ( 2001; ). The structure and domain organization of Escherichia coli isocitrate lyase. Acta Crystallogr D Biol Crystallogr 57, 1209–1218.[CrossRef]
    [Google Scholar]
  10. Brock, M. ( 2009; ). Fungal metabolism in host niches. Curr Opin Microbiol 12, 371–376.[CrossRef]
    [Google Scholar]
  11. Cole, S. T., Brosch, R., Parkhill, J., Garnier, T., Churcher, C., Harris, D., Gordon, S. V., Eiglmeier, K., Gas, S. & other authors ( 1998; ). Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393, 537–544.[CrossRef]
    [Google Scholar]
  12. Cozzone, A. J. ( 1998; ). Regulation of acetate metabolism by protein phosphorylation in enteric bacteria. Annu Rev Microbiol 52, 127–164.[CrossRef]
    [Google Scholar]
  13. Davis, W. L., Jones, R. G. & Goodman, D. B. ( 1986; ). Cytochemical localization of malate synthase in amphibian fat body adipocytes: possible glyoxylate cycle in a vertebrate. J Histochem Cytochem 34, 689–692.[CrossRef]
    [Google Scholar]
  14. Davis, W. L., Jones, R. G., Farmer, G. R., Dickerson, T., Cortinas, E., Cooper, O. J., Crawford, L. & Goodman, D. B. ( 1990; ). Identification of glyoxylate cycle enzymes in chick liver – the effect of vitamin D3: cytochemistry and biochemistry. Anat Rec 227, 271–284.[CrossRef]
    [Google Scholar]
  15. Derengowski, L. S., Tavares, A. H., Silva, S., Procópio, L. S., Felipe, M. S. & Silva-Pereira, I. ( 2008; ). Upregulation of glyoxylate cycle genes upon Paracoccidioides brasiliensis internalization by murine macrophages and in vitro nutritional stress condition. Med Mycol 46, 125–134.[CrossRef]
    [Google Scholar]
  16. Diehl, P. & McFadden, B. A. ( 1993; ). Site-directed mutagenesis of lysine 193 in Escherichia coli isocitrate lyase by use of unique restriction enzyme site elimination. J Bacteriol 175, 2263–2270.
    [Google Scholar]
  17. Diehl, P. & McFadden, B. A. ( 1994; ). The importance of four histidine residues in isocitrate lyase from Escherichia coli. J Bacteriol 176, 927–931.
    [Google Scholar]
  18. Dixon, G. H., Kornberg, H. L. & Lund, P. ( 1960; ). Purification and properties of malate synthetase. Biochim Biophys Acta 41, 217–233.[CrossRef]
    [Google Scholar]
  19. Dubnau, E., Fontán, P., Manganelli, R., Soares-Appel, S. & Smith, I. ( 2002; ). Mycobacterium tuberculosis genes induced during infection of human macrophages. Infect Immun 70, 2787–2795.[CrossRef]
    [Google Scholar]
  20. Eastmond, P. J., Germain, V., Lange, P. R., Bryce, J. H., Smith, S. M. & Graham, I. A. ( 2000; ). Postgerminative growth and lipid catabolism in oilseeds lacking the glyoxylate cycle. Proc Natl Acad Sci U S A 97, 5669–5674.[CrossRef]
    [Google Scholar]
  21. Ebel, F., Schwienbacher, M., Beyer, J., Heesemann, J., Brakhage, A. A. & Brock, M. ( 2006; ). Analysis of the regulation, expression, and localisation of the isocitrate lyase from Aspergillus fumigatus, a potential target for antifungal drug development. Fungal Genet Biol 43, 476–489.[CrossRef]
    [Google Scholar]
  22. Fang, F. C., Libby, S. J., Castor, M. E. & Fung, A. M. ( 2005; ). Isocitrate lyase (AceA) is required for Salmonella persistence but not for acute lethal infection in mice. Infect Immun 73, 2547–2549.[CrossRef]
    [Google Scholar]
  23. Fenhalls, G., Stevens, L., Moses, L., Bezuidenhout, J., Betts, J. C., van Helden, P., Lukey, P. T. & Duncan, K. ( 2002; ). In situ detection of Mycobacterium tuberculosis transcripts in human lung granulomas reveals differential gene expression in necrotic lesions. Infect Immun 70, 6330–6338.[CrossRef]
    [Google Scholar]
  24. Fradin, C., Kretschmar, M., Nichterlein, T., Gaillardin, C., d'Enfert, C. & Hube, B. ( 2003; ). Stage-specific gene expression of Candida albicans in human blood. Mol Microbiol 47, 1523–1543.[CrossRef]
    [Google Scholar]
  25. Fradin, C., De Groot, P., MacCallum, D., Schaller, M., Klis, F., Odds, F. C. & Hube, B. ( 2005; ). Granulocytes govern the transcriptional response, morphology and proliferation of Candida albicans in human blood. Mol Microbiol 56, 397–415.[CrossRef]
    [Google Scholar]
  26. García-de los Santos, A., Morales, A., Baldomá, L., Clark, S. R., Brom, S., Yost, C. K., Hernández-Lucas, I., Aguilar, J. & Hynes, M. F. ( 2002; ). The glcB locus of Rhizobium leguminosarum VF39 encodes an arabinose-inducible malate synthase. Can J Microbiol 48, 922–932.[CrossRef]
    [Google Scholar]
  27. Gonzalo-Asensio, J., Mostowy, S., Harders-Westerveen, J., Huygen, K., Hernández-Pando, R., Thole, J., Behr, M., Gicquel, B. & Martín, C. ( 2008; ). PhoP: a missing piece in the intricate puzzle of Mycobacterium tuberculosis virulence. PLoS One 3, e3496 [CrossRef]
    [Google Scholar]
  28. Gould, T. A., van de Langemheen, H., Muñoz-Elías, E. J., McKinney, J. D. & Sacchettini, J. C. ( 2006; ). Dual role of isocitrate lyase 1 in the glyoxylate and methylcitrate cycles in Mycobacterium tuberculosis. Mol Microbiol 61, 940–947.[CrossRef]
    [Google Scholar]
  29. Graham, J. E. & Clark-Curtiss, J. E. ( 1999; ). Identification of Mycobacterium tuberculosis RNAs synthesized in response to phagocytosis by human macrophages by selective capture of transcribed sequences (SCOTS). Proc Natl Acad Sci U S A 96, 11554–11559.[CrossRef]
    [Google Scholar]
  30. Green, L. S., Karr, D. B. & Emerich, D. W. ( 1998; ). Isocitrate dehydrogenase and glyoxylate cycle enzyme activities in Bradyrhizobium japonicum under various growth conditions. Arch Microbiol 169, 445–451.[CrossRef]
    [Google Scholar]
  31. Hillier, S. L. & Charnetzky, W. T. ( 1981; ). Rapid diagnostic test that uses isocitrate lyase activity for identification of Yersinia pestis. J Clin Microbiol 13, 661–665.
    [Google Scholar]
  32. Hillier, S. & Charnetzky, W. T. ( 1981a; ). Glyoxylate bypass enzymes in Yersinia species and multiple forms of isocitrate lyase in Yersinia pestis. J Bacteriol 145, 452–458.
    [Google Scholar]
  33. Höner Zu Bentrup, K., Miczak, A., Swenson, D. L. & Russell, D. G. ( 1999; ). Characterization of activity and expression of isocitrate lyase in Mycobacterium avium and Mycobacterium tuberculosis. J Bacteriol 181, 7161–7167.
    [Google Scholar]
  34. Howard, B. R., Endrizzi, J. A. & Remington, S. J. ( 2000; ). Crystal structure of Escherichia coli malate synthase G complexed with magnesium and glyoxylate at 2.0 Å resolution: mechanistic implications. Biochemistry 39, 3156–3168.[CrossRef]
    [Google Scholar]
  35. Idnurm, A. & Howlett, B. J. ( 2002; ). Isocitrate lyase is essential for pathogenicity of the fungus Leptosphaeria maculans to canola (Brassica napus). Eukaryot Cell 1, 719–724.[CrossRef]
    [Google Scholar]
  36. Johnson, G. V., Evans, H. J. & Ching, T. ( 1966; ). Enzymes of glyoxylate cycle in rhizobia and nodules of legumes. Plant Physiol 41, 1330–1336.[CrossRef]
    [Google Scholar]
  37. Kahn, F. R. & McFadden, B. A. ( 1980; ). Embryogenesis and the glyoxylate cycle. FEBS Lett 115, 312–314.[CrossRef]
    [Google Scholar]
  38. Kelly, B. G., Wall, D. M., Boland, C. A. & Meijer, W. G. ( 2002; ). Isocitrate lyase of the facultative intracellular pathogen Rhodococcus equi. Microbiology 148, 793–798.
    [Google Scholar]
  39. Kim, Y. R., Brinsmade, S. R., Yang, Z., Escalante-Semerena, J. & Fierer, J. ( 2006; ). Mutation of phosphotransacetylase but not isocitrate lyase reduces the virulence of Salmonella enterica serovar Typhimurium in mice. Infect Immun 74, 2498–2502.[CrossRef]
    [Google Scholar]
  40. Kinhikar, A. G., Vargas, D., Li, H., Mahaffey, S. B., Hinds, L., Belisle, J. T. & Laal, S. ( 2006; ). Mycobacterium tuberculosis malate synthase is a laminin-binding adhesin. Mol Microbiol 60, 999–1013.[CrossRef]
    [Google Scholar]
  41. Kohler, S., Foulongne, V., Ouahrani-Bettache, S., Bourg, G., Teyssier, J., Ramuz, M. & Liautard, J. P. ( 2002; ). The analysis of the intramacrophagic virulome of Brucella suis deciphers the environment encountered by the pathogen inside the macrophage host cell. Proc Natl Acad Sci U S A 99, 15711–15716.[CrossRef]
    [Google Scholar]
  42. Kondrashov, F. A., Koonin, E. V., Morgunov, I. G., Finogenova, T. V. & Kondrashova, M. N. ( 2006; ). Evolution of glyoxylate cycle enzymes in Metazoa: evidence of multiple horizontal transfer events and pseudogene formation. Biol Direct 1, 31 [CrossRef]
    [Google Scholar]
  43. Kornberg, H. L. & Beevers, H. ( 1957a; ). The glyoxylate cycle as a stage in the conversion of fat to carbohydrate in castor beans. Biochim Biophys Acta 26, 531–537.[CrossRef]
    [Google Scholar]
  44. Kornberg, H. L. & Beevers, H. ( 1957b; ). A mechanism of conversion of fat to carbohydrate in castor beans. Nature 180, 35–36.[CrossRef]
    [Google Scholar]
  45. Kornberg, H. L. & Krebs, H. A. ( 1957; ). Synthesis of cell constituents from C2-units by a modified tricarboxylic acid cycle. Nature 179, 988–991.[CrossRef]
    [Google Scholar]
  46. Kornberg, H. L. & Madsen, N. B. ( 1957; ). Synthesis of C4-dicarboxylic acids from acetate by a glyoxylate bypass of the tricarboxylic acid cycle. Biochim Biophys Acta 24, 651–653.[CrossRef]
    [Google Scholar]
  47. Kunze, M., Kragler, F., Binder, M., Hartig, A. & Gurvitz, A. ( 2002; ). Targeting of malate synthase 1 to the peroxisomes of Saccharomyces cerevisiae cells depends on growth on oleic acid medium. Eur J Biochem 269, 915–922.[CrossRef]
    [Google Scholar]
  48. Lattif, A. A., Prasad, R., Banerjee, U., Gupta, N., Mohammad, S. & Baquer, N. Z. ( 2006; ). The glyoxylate cycle enzyme activities in the pathogenic isolates of Candida albicans obtained from HIV/AIDS, diabetic and burn patients. Mycoses 49, 85–90.[CrossRef]
    [Google Scholar]
  49. Lee, H. S., Lee, T. H., Yang, S. H., Shin, H. J., Shin, J. & Oh, K. B. ( 2007; ). Sesterterpene sulfates as isocitrate lyase inhibitors from tropical sponge Hippospongia sp. Bioorg Med Chem Lett 17, 2483–2486.[CrossRef]
    [Google Scholar]
  50. Lee, H. S., Yoon, K. M., Han, Y. R., Lee, K. J., Chung, S. C., Kim, T. I., Lee, S. H., Shin, J. & Oh, K. B. ( 2009; ). 5-Hydroxyindole-type alkaloids, as Candida albicans isocitrate lyase inhibitors, from the tropical sponge Hyrtios sp. Bioorg Med Chem Lett 19, 1051–1053.[CrossRef]
    [Google Scholar]
  51. Lindsey, T. L., Hagins, J. M., Sokol, P. A. & Silo-Suh, L. A. ( 2008; ). Virulence determinants from a cystic fibrosis isolate of Pseudomonas aeruginosa include isocitrate lyase. Microbiology 154, 1616–1627.[CrossRef]
    [Google Scholar]
  52. Liu, F., Thatcher, J. D. & Epstein, H. F. ( 1997; ). Induction of glyoxylate cycle expression in Caenorhabditis elegans: a fasting response throughout larval development. Biochemistry 36, 255–260.[CrossRef]
    [Google Scholar]
  53. Lohman, J. R., Olson, A. C. & Remington, S. J. ( 2008; ). Atomic resolution structures of Escherichia coli and Bacillus anthracis malate synthase A: comparison with isoform G and implications for structure-based drug discovery. Protein Sci 17, 1935–1945.[CrossRef]
    [Google Scholar]
  54. Lorenz, M. C. & Fink, G. R. ( 2001; ). The glyoxylate cycle is required for fungal virulence. Nature 412, 83–86.[CrossRef]
    [Google Scholar]
  55. Lorenz, M. C. & Fink, G. R. ( 2002; ). Life and death in a macrophage: role of the glyoxylate cycle in virulence. Eukaryot Cell 1, 657–662.[CrossRef]
    [Google Scholar]
  56. Lorenz, M. C., Bender, J. A. & Fink, G. R. ( 2004; ). Transcriptional response of Candida albicans upon internalization by macrophages. Eukaryot Cell 3, 1076–1087.[CrossRef]
    [Google Scholar]
  57. McCammon, M. T., Veenhuis, M., Trapp, S. B. & Goodman, J. M. ( 1990; ). Association of glyoxylate and beta-oxidation enzymes with peroxisomes of Saccharomyces cerevisiae. J Bacteriol 172, 5816–5827.
    [Google Scholar]
  58. McFadden, B. A. & Purohit, S. ( 1977; ). Itaconate, an isocitrate lyase-directed inhibitor in Pseudomonas indigofera. J Bacteriol 131, 136–144.
    [Google Scholar]
  59. McKinney, J. D., Höner zu Bentrup, K., Muñoz-Elías, E. J., Miczak, A., Chen, B., Chan, W. T., Swenson, D., Sacchettini, J. C., Jacobs, W. R., Jr & Russell, D. G. ( 2000; ). Persistence of Mycobacterium tuberculosis in macrophages and mice requires the glyoxylate shunt enzyme isocitrate lyase. Nature 406, 735–738.[CrossRef]
    [Google Scholar]
  60. Melo Cardoso Almeida, C., Vasconcelos, A. C., Jr, Kipnis, A., Andrade, A. L. & Junqueira-Kipnis, A. P. ( 2008; ). Humoral immune responses of tuberculosis patients in Brazil indicate recognition of Mycobacterium tuberculosis MPT-51 and GlcB. Clin Vaccine Immunol 15, 579–581.[CrossRef]
    [Google Scholar]
  61. Muñoz-Elías, E. J. & McKinney, J. D. ( 2005; ). Mycobacterium tuberculosis isocitrate lyases 1 and 2 are jointly required for in vivo growth and virulence. Nat Med 11, 638–644.[CrossRef]
    [Google Scholar]
  62. Muñoz-Elías, E. J., Upton, A. M., Cherian, J. & McKinney, J. D. ( 2006; ). Role of the methylcitrate cycle in Mycobacterium tuberculosis metabolism, intracellular growth, and virulence. Mol Microbiol 60, 1109–1122.[CrossRef]
    [Google Scholar]
  63. Murthy, P. S., Sirsi, M. & Ramakrishnan, T. ( 1973; ). Effect of age on the enzymes of tricarboxylic acid and related cycles in Mycobacterium tuberculosis H37Rv. Am Rev Respir Dis 108, 689–690.
    [Google Scholar]
  64. Oren, A. & Gurevich, P. ( 1994; ). Production of d-lactate, acetate, and pyruvate from glycerol in communities of halophilic archaea in the Dead sea and in saltern crystallizer ponds. FEMS Microbiol Ecol 14, 147–156.
    [Google Scholar]
  65. Peterson, J. B. & LaRue, T. A. ( 1981; ). Utilization of aldehydes and alcohols in soybean bacteroids. Plant Physiol 68, 489–493.[CrossRef]
    [Google Scholar]
  66. Peterson, J. B. & LaRue, T. A. ( 1982; ). Soluble aldehyde dehydrogenase and metabolism of aldehydes by soybean bacteroids. J Bacteriol 151, 1473–1484.
    [Google Scholar]
  67. Piekarska, K., Mol, E., van den Berg, M., Ardí, G., van den Burg, J., van Roermund, C., MacCallum, D., Odds, F. & Distel, B. ( 2006; ). Peroxisomal fatty acid beta-oxidation is not essential for virulence of Candida albicans. Eukaryot Cell 5, 1847–1856.[CrossRef]
    [Google Scholar]
  68. Piekarska, K., Hardy, G., Mol, E., van den Burg, J., Strijbis, K., van Roermund, C., van den Berg, M. & Distel, B. ( 2008; ). The activity of the glyoxylate cycle in peroxisomes of Candida albicans depends on a functional beta-oxidation pathway: evidence for reduced metabolite transport across the peroxisomal membrane. Microbiology 154, 3061–3072.[CrossRef]
    [Google Scholar]
  69. Prigneau, O., Porta, A., Poudrier, J. A., Colonna-Romano, S., Noël, T. & Maresca, B. ( 2003; ). Genes involved in beta-oxidation, energy metabolism and glyoxylate cycle are induced by Candida albicans during macrophage infection. Yeast 20, 723–730.[CrossRef]
    [Google Scholar]
  70. Purohit, H. J., Cheema, S., Lal, S., Raut, C. P. & Kalia, V. C. ( 2007; ). In search of drug targets for Mycobacterium tuberculosis. Infect Disord Drug Targets 7, 245–250.[CrossRef]
    [Google Scholar]
  71. Quan, T. J., Vanderlinden, J. J. & Tsuchiya, K. R. ( 1982; ). Evaluation of a qualitative isocitrate lyase assay for rapid presumptive identification of Yersinia pestis cultures. J Clin Microbiol 15, 1178–1179.
    [Google Scholar]
  72. Ramírez, M. A. & Lorenz, M. C. ( 2007; ). Mutations in alternative carbon utilization pathways in Candida albicans attenuate virulence and confer pleiotropic phenotypes. Eukaryot Cell 6, 280–290.[CrossRef]
    [Google Scholar]
  73. Ramírez-Trujillo, J. A., Encarnación, S., Salazar, E., de los Santos, A. G., Dunn, M. F., Emerich, D. W., Calva, E. & Hernández-Lucas, I. ( 2007; ). Functional characterization of the Sinorhizobium meliloti acetate metabolism genes aceA, SMc00767, and glcB. J Bacteriol 189, 5875–5884.[CrossRef]
    [Google Scholar]
  74. Rauyaree, P., Choi, W., Fang, E., Blackmon, B. & Dean, R. A. ( 2001; ). Genes expressed during early stages of rice infection with the rice blast fungus Magnaporthe grisea. Mol Plant Pathol 2, 347–354.[CrossRef]
    [Google Scholar]
  75. Rehman, A. & Mcfadden, B. A. ( 1996; ). The consequences of replacing histidine 356 in isocitrate lyase from Escherichia coli. Arch Biochem Biophys 336, 309–315.[CrossRef]
    [Google Scholar]
  76. Rehman, A. & Mcfadden, B. A. ( 1997; ). Lysine 194 is functional in isocitrate lyase from Escherichia coli. Curr Microbiol 35, 14–17.[CrossRef]
    [Google Scholar]
  77. Rude, T. H., Toffaletti, D. L., Cox, G. M. & Perfect, J. R. ( 2002; ). Relationship of the glyoxylate pathway to the pathogenesis of Cryptococcus neoformans. Infect Immun 70, 5684–5694.[CrossRef]
    [Google Scholar]
  78. Samanich, K., Belisle, J. T. & Laal, S. ( 2001; ). Homogeneity of antibody responses in tuberculosis patients. Infect Immun 69, 4600–4609.[CrossRef]
    [Google Scholar]
  79. Schnappinger, D., Ehrt, S., Voskuil, M. I., Liu, Y., Mangan, J. A., Monahan, I. M., Dolganov, G., Efron, B., Butcher, P. D. & other authors ( 2003; ). Transcriptional adaptation of Mycobacterium tuberculosis within macrophages: insights into the phagosomal environment. J Exp Med 198, 693–704.[CrossRef]
    [Google Scholar]
  80. Schöbel, F., Ibrahim-Granet, O., Avé, P., Latgé, J. P., Brakhage, A. A. & Brock, M. ( 2007; ). Aspergillus fumigatus does not require fatty acid metabolism via isocitrate lyase for development of invasive aspergillosis. Infect Immun 75, 1237–1244.[CrossRef]
    [Google Scholar]
  81. Sebbane, F., Jarrett, C. O., Linkenhoker, J. R. & Hinnebusch, B. J. ( 2004; ). Evaluation of the role of constitutive isocitrate lyase activity in Yersinia pestis infection of the flea vector and mammalian host. Infect Immun 72, 7334–7337.[CrossRef]
    [Google Scholar]
  82. Segal, W. & Bloch, H. ( 1956; ). Biochemical differentiation of Mycobacterium tuberculosis grown in vivo and in vitro. J Bacteriol 72, 132–141.
    [Google Scholar]
  83. Serrano, J. A. & Bonete, M. J. ( 2001; ). Sequencing, phylogenetic and transcriptional analysis of the glyoxylate bypass operon (ace) in the halophilic archaeon Haloferax volcanii. Biochim Biophys Acta 1520, 154–162.[CrossRef]
    [Google Scholar]
  84. Sharma, V., Sharma, S., Höner zu Bentrup, K., McKinney, J. D., Russell, D. G., Jacobs, W. R., Jr & Sacchettini, J. C. ( 2000; ). Structure of isocitrate lyase, a persistence factor of Mycobacterium tuberculosis. Nat Struct Biol 7, 663–668.[CrossRef]
    [Google Scholar]
  85. Singh, V. K. & Ghosh, I. ( 2006; ). Kinetic modeling of tricarboxylic acid cycle and glyoxylate bypass in Mycobacterium tuberculosis, and its application to assessment of drug targets. Theor Biol Med Model 3, 27 [CrossRef]
    [Google Scholar]
  86. Smith, R. A. & Gunsalus, I. C. ( 1954; ). Isocitritase: a new tricarboxylic acid cleavage system. J Am Chem Soc 76, 5002–5003.
    [Google Scholar]
  87. Solomon, P. S., Lee, R. C., Wilson, T. J. & Oliver, R. P. ( 2004; ). Pathogenicity of Stagonospora nodorum requires malate synthase. Mol Microbiol 53, 1065–1073.[CrossRef]
    [Google Scholar]
  88. Son, M. S., Matthews, W. J., Jr, Kang, Y., Nguyen, D. T. & Hoang, T. T. ( 2007; ). In vivo evidence of Pseudomonas aeruginosa nutrient acquisition and pathogenesis in the lungs of cystic fibrosis patients. Infect Immun 75, 5313–5324.[CrossRef]
    [Google Scholar]
  89. Srivastava, V., Jain, A., Srivastava, B. S. & Srivastava, R. ( 2008; ). Selection of genes of Mycobacterium tuberculosis upregulated during residence in lungs of infected mice. Tuberculosis (Edinb) 88, 171–177.[CrossRef]
    [Google Scholar]
  90. Stovall, I. & Cole, M. ( 1978; ). Organic acid metabolism by isolated Rhizobium japonicum bacteroids. Plant Physiol 61, 787–790.[CrossRef]
    [Google Scholar]
  91. Sturgill-Koszycki, S., Haddix, P. L. & Russell, D. G. ( 1997; ). The interaction between Mycobacterium and the macrophage analyzed by two-dimensional polyacrylamide gel electrophoresis. Electrophoresis 18, 2558–2565.[CrossRef]
    [Google Scholar]
  92. Tamir-Ariel, D., Navon, N. & Burdman, S. ( 2007; ). Identification of genes in Xanthomonas campestris pv. vesicatoria induced during its interaction with tomato. J Bacteriol 189, 6359–6371.[CrossRef]
    [Google Scholar]
  93. Tchawa Yimga, M., Leatham, M. P., Allen, J. H., Laux, D. C., Conway, T. & Cohen, P. S. ( 2006; ). Role of gluconeogenesis and the tricarboxylic acid cycle in the virulence of Salmonella enterica serovar Typhimurium in BALB/c mice. Infect Immun 74, 1130–1140.[CrossRef]
    [Google Scholar]
  94. Thirach, S., Cooper, C. R., Jr & Vanittanakom, N. ( 2008; ). Molecular analysis of the Penicillium marneffei glyceraldehyde-3-phosphate dehydrogenase-encoding gene (gpdA) and differential expression of gpdA and the isocitrate lyase-encoding gene (acuD) upon internalization by murine macrophages. J Med Microbiol 57, 1322–1328.[CrossRef]
    [Google Scholar]
  95. Timm, J., Post, F. A., Bekker, L. G., Walther, G. B., Wainwright, H. C., Manganelli, R., Chan, W. T., Tsenova, L., Gold, B. & other authors ( 2003; ). Differential expression of iron-, carbon-, and oxygen-responsive mycobacterial genes in the lungs of chronically infected mice and tuberculosis patients. Proc Natl Acad Sci U S A 100, 14321–14326.[CrossRef]
    [Google Scholar]
  96. Tugarinov, V., Choy, W. Y., Orekhov, V. Y. & Kay, L. E. ( 2005; ). Solution NMR-derived global fold of a monomeric 82-kDa enzyme. Proc Natl Acad Sci U S A 102, 622–627.[CrossRef]
    [Google Scholar]
  97. Vereecke, D., Cornelis, K., Temmerman, W., Jaziri, M., Van Montagu, M., Holsters, M. & Goethals, K. ( 2002a; ). Chromosomal locus that affects pathogenicity of Rhodococcus fascians. J Bacteriol 184, 1112–1120.[CrossRef]
    [Google Scholar]
  98. Vereecke, D., Cornelis, K., Temmerman, W., Holsters, M. & Goethals, K. ( 2002b; ). Versatile persistence pathways for pathogens of animals and plants. Trends Microbiol 10, 485–488.[CrossRef]
    [Google Scholar]
  99. Wall, D. M., Duffy, P. S., Dupont, C., Prescott, J. F. & Meijer, W. G. ( 2005; ). Isocitrate lyase activity is required for virulence of the intracellular pathogen Rhodococcus equi. Infect Immun 73, 6736–6741.[CrossRef]
    [Google Scholar]
  100. Wanchu, A., Dong, Y., Sethi, S., Myneedu, V. P., Nadas, A., Liu, Z., Belisle, J. & Laal, S. ( 2008; ). Biomarkers for clinical and incipient tuberculosis: performance in a TB-endemic country. PLoS One 3, e2071 [CrossRef]
    [Google Scholar]
  101. Wang, Z. Y., Thornton, C. R., Kershaw, M. J., Debao, L. & Talbot, N. J. ( 2003; ). The glyoxylate cycle is required for temporal regulation of virulence by the plant pathogenic fungus Magnaporthe grisea. Mol Microbiol 47, 1601–1612.[CrossRef]
    [Google Scholar]
  102. Wayne, L. G. & Lin, K. Y. ( 1982; ). Glyoxylate metabolism and adaptation of Mycobacterium tuberculosis to survival under anaerobic conditions. Infect Immun 37, 1042–1049.
    [Google Scholar]
  103. Wong, P. P. & Evans, H. J. ( 1971; ). Poly-β-hydroxybutyrate utilization by soybean (Glycine max Merr) nodules and assessment of its role in maintenance of nitrogenase activity. Plant Physiol 47, 750–755.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.030858-0
Loading
/content/journal/micro/10.1099/mic.0.030858-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error