1887

Abstract

Despite the existence of various virulence factors in the genus, enterococcal virulence is still a debated issue. A main consideration is the detection of the same virulence genes in strains isolated from nosocomial or community-acquired infections, and from food products. The goal of this study was to evaluate the roles of two well-characterized enterococcal virulence factors, Fsr and gelatinase, in the potential virulence of food strains. Virulence of unrelated isolates, including dairy strains carrying and operons, was compared in the insect model. dairy strains were able to kill larvae and were as virulent as strain OG1RF, one of the most widely used for virulence studies. In contrast, and strains were avirulent or poorly virulent for . To evaluate the role of and in virulence of dairy strains, both genes were deleted independently in two strains. The Δ and Δ deletion mutants both produced a gelatinase-negative phenotype. Although both mutations significantly attenuated virulence in , the Δ strains were more strongly attenuated. These results agree with previous findings suggesting the involvement of in the control of other cell functions relevant to virulence. Our work demonstrates that the presence of functional , and to a lesser extent , in dairy enterococci should be considered with caution.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.030775-0
2009-11-01
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/11/3564.html?itemId=/content/journal/micro/10.1099/mic.0.030775-0&mimeType=html&fmt=ahah

References

  1. Aarestrup F. M., Butaye P., Witte W. 2002; Nonhuman reservoirs of enterococci. In The Enterococci: Pathogenesis, Molecular Biology and Antibiotic Resistance pp 55–99 Edited by Gilmore M. S. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  2. Alves P. I., Martins M. P., Semedo T., Figueiredo Marques J. J., Tenreiro R., Barreto Crespo M. T. 2004; Comparison of phenotypic and genotypic taxonomic methods for the identification of dairy enterococci. Antonie Van Leeuwenhoek 85:237–252
    [Google Scholar]
  3. Bouillaut L., Ramarao N., Buisson C., Gilois N., Gohar M., Lereclus D., Nielsen-LeRoux C. 2005; FlhA influences transcription of PlcR regulated genes, protein production, and virulence. Appl Environ Microbiol 71:8903–8910
    [Google Scholar]
  4. Bourgogne A., Hilsenbeck S. G., Dunny G. M., Murray B. E. 2006; Comparison of OG1RF and an isogenic fsrB deletion mutant by transcriptional analysis: the Fsr system of Enterococcus faecalis is more than the activator of gelatinase and serine protease. J Bacteriol 188:2875–2884
    [Google Scholar]
  5. Bourgogne A., Garsin D. A., Qin X., Singh K. V., Sillanpaa J., Yerrapragada S., Ding Y., Dugan-Rocha S., Buhay C. other authors 2008; Large scale variation in Enterococcus faecalis illustrated by the genome analysis of strain OG1RF. Genome Biol 9:R110
    [Google Scholar]
  6. Brennan M., Thomas D. Y., Whiteway M., Kavanagh K. 2002; Correlation between virulence of Candida albicans mutants in mice and Galleria mellonella larvae. FEMS Immunol Med Microbiol 34:153–157
    [Google Scholar]
  7. Brinster S., Furlan S., Serror P. 2007; C-terminal WxL domain mediates cell wall binding in Enterococcus faecalis and other Gram-positive bacteria. J Bacteriol 189:1244–1253
    [Google Scholar]
  8. Choi J. Y., Sifri C. D., Goumnerov B. C., Rahme L. G., Ausubel F. M., Calderwood S. B. 2002; Identification of virulence genes in a pathogenic strain of Pseudomonas aeruginosa by representational difference analysis. J Bacteriol 184:952–961
    [Google Scholar]
  9. Cotter G., Doyle S., Kavanagh K. 2000; Development of an insect model for the in vivo pathogenicity testing of yeasts. FEMS Immunol Med Microbiol 27:163–169
    [Google Scholar]
  10. Dower W. J., Miller J. F., Ragsdale C. W. 1988; High efficiency transformation of E. coli by high voltage electroporation. Nucleic Acids Res 16:6127–6145
    [Google Scholar]
  11. Dunny G. M., Brown B. L., Clewell D. B. 1978; Induced cell aggregation and mating in Streptococcus faecalis: evidence for a bacterial sex pheromone. Proc Natl Acad Sci U S A 75:3479–3483
    [Google Scholar]
  12. Dunny G. M., Lee L. N., LeBlanc D. J. 1991; Improved electroporation and cloning vector system for Gram-positive bacteria. Appl Environ Microbiol 57:1194–1201
    [Google Scholar]
  13. Eaton T. J., Gasson M. J. 2001; Molecular screening of Enterococcus virulence determinants and potential for genetic exchange between food and medical isolates. Appl Environ Microbiol 67:1628–1635
    [Google Scholar]
  14. Engelbert M., Mylonakis E., Ausubel F. M., Calderwood S. B., Gilmore M. S. 2004; Contribution of gelatinase, serine protease, and fsr to the pathogenesis of Enterococcus faecalis endophthalmitis. Infect Immun 72:3628–3633
    [Google Scholar]
  15. Fares H., Greenwald I. 2001; Genetic analysis of endocytosis in Caenorhabditis elegans: coelomocyte uptake defective mutants. Genetics 159:133–145
    [Google Scholar]
  16. Fedhila S., Daou N., Lereclus D., Nielsen-LeRoux C. 2006; Identification of Bacillus cereus internalin and other candidate virulence genes specifically induced during oral infection in insects. Mol Microbiol 62:339–355
    [Google Scholar]
  17. Garsin D. A., Sifri C. D., Mylonakis E., Qin X., Singh K. V., Murray B. E., Calderwood S. B., Ausubel F. M. 2001; A simple model host for identifying Gram-positive virulence factors. Proc Natl Acad Sci U S A 98:10892–10897
    [Google Scholar]
  18. Grant S. G., Jessee J., Bloom F. R., Hanahan D. 1990; Differential plasmid rescue from transgenic mouse DNAs into Escherichia coli methylation-restriction mutants. Proc Natl Acad Sci U S A 87:4645–4649
    [Google Scholar]
  19. Hancock L. E., Gilmore M. S. 2000; Pathogenicity of enterococci. In Gram-Positive Pathogens pp 251–258 Edited by Fischetti V. A. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  20. Jha A. K., Bais H. P., Vivanco J. M. 2005; Enterococcus faecalis mammalian virulence-related factors exhibit potent pathogenicity in the Arabidopsis thaliana plant model. Infect Immun 73:464–475
    [Google Scholar]
  21. Kayaoglu G., Orstavik D. 2004; Virulence factors of Enterococcus faecalis: relationship to endodontic disease. Crit Rev Oral Biol Med 15:308–320
    [Google Scholar]
  22. Law J., Buist G., Haandrikman A., Kok J., Venema G., Leenhouts K. 1995; A system to generate chromosomal mutations in Lactococcus lactis which allows fast analysis of targeted genes. J Bacteriol 177:7011–7018
    [Google Scholar]
  23. Lepage E., Brinster S., Caron C., Ducroix-Crepy C., Rigottier-Gois L., Dunny G., Hennequet-Antier C., Serror P. 2006; Comparative genomic hybridization analysis of Enterococcus faecalis: identification of genes absent from food strains. J Bacteriol 188:6858–6868
    [Google Scholar]
  24. Lester C. H., Frimodt-Moller N., Sorensen T. L., Monnet D. L., Hammerum A. M. 2006; In vivo transfer of the vanA resistance gene from an Enterococcus faecium isolate of animal origin to an E. faecium isolate of human origin in the intestines of human volunteers. Antimicrob Agents Chemother 50:596–599
    [Google Scholar]
  25. Lopes M. de F. S., Simoes A. P., Tenreiro R., Marques J. J. F., Crespo M. T. B. 2006; Activity and expression of a virulence factor, gelatinase, in dairy enterococci. Int J Food Microbiol 112:208–214
    [Google Scholar]
  26. Maadani A., Fox K. A., Mylonakis E., Garsin D. A. 2007; Enterococcus faecalis mutations affecting virulence in the Caenorhabditis elegans model host. Infect Immun 75:2634–2637
    [Google Scholar]
  27. Maguin E., Prevost H., Ehrlich S. D., Gruss A. 1996; Efficient insertional mutagenesis in lactococci and other Gram-positive bacteria. J Bacteriol 178:931–935
    [Google Scholar]
  28. Mater D. D., Langella P., Corthier G., Flores M. J. 2005; Evidence of vancomycin resistance gene transfer between enterococci of human origin in the gut of mice harbouring human microbiota. J Antimicrob Chemother 56:975–978
    [Google Scholar]
  29. Mohamed J. A., Murray B. E. 2006; Influence of the fsr locus on biofilm formation by Enterococcus faecalis lacking gelE . J Med Microbiol 55:1747–1750
    [Google Scholar]
  30. Mundt J. O. 1986; Enterococci. In Bergey's Manual of Systematic Bacteriology vol. 2 p 1063 Edited by Sneath P. H. A., S N., Mair M. E. Sharpe., Holt J. G. Baltimore: Williams and Wilkins;
    [Google Scholar]
  31. Mylonakis E., Moreno R., El Khoury J. B., Idnurm A., Heitman J., Calderwood S. B., Ausubel F. M., Diener A. 2005; Galleria mellonella as a model system to study Cryptococcus neoformans pathogenesis. Infect Immun 73:3842–3850
    [Google Scholar]
  32. Nakayama J., Chen S., Oyama N., Nishiguchi K., Azab E. A., Tanaka E., Kariyama R., Sonomoto K. 2006; Revised model for Enterococcus faecalis fsr quorum-sensing system: the small open reading frame fsrD encodes the gelatinase biosynthesis-activating pheromone propeptide corresponding to staphylococcal agrD . J Bacteriol 188:8321–8326
    [Google Scholar]
  33. Ogier J. C., Serror P. 2008; Safety assessment of dairy microorganisms: the Enterococcus genus. Int J Food Microbiol 126:291–301
    [Google Scholar]
  34. Park S. Y., Kim K. M., Lee J. H., Seo S. J., Lee I. H. 2007; Extracellular gelatinase of Enterococcus faecalis destroys a defense system in insect hemolymph and human serum. Infect Immun 75:1861–1869
    [Google Scholar]
  35. Qin X., Singh K. V., Weinstock G. M., Murray B. E. 2000; Effects of Enterococcus faecalis fsr genes on production of gelatinase and a serine protease and virulence. Infect Immun 68:2579–2586
    [Google Scholar]
  36. Qin X., Singh K. V., Weinstock G. M., Murray B. E. 2001; Characterization of fsr, a regulator controlling expression of gelatinase and serine protease in Enterococcus faecalis OG1RF. J Bacteriol 183:3372–3382
    [Google Scholar]
  37. Ribeiro T., Abrantes M., Lopes M. de F. S., Crespo M. T. B. 2007; Vancomycin-susceptible dairy and clinical enterococcal isolates carry vanA and vanB genes. Int J Food Microbiol 113:289–295
    [Google Scholar]
  38. Salamitou S., Ramisse F., Brehelin M., Bourguet D., Gilois N., Gominet M., Hernandez E., Lereclus D. 2000; The PlcR regulon is involved in the opportunistic properties of Bacillus thuringiensis and Bacillus cereus in mice and insects. Microbiology 146:2825–2832
    [Google Scholar]
  39. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual , 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  40. Schell M. A., Lipscomb L., Deshazer D. 2008; Comparative genomics and an insect model rapidly identify novel virulence genes of Burkholderia mallei . J Bacteriol 190:2306–2313
    [Google Scholar]
  41. Schneider D. S., Ayres J. S., Brandt S. M., Costa A., Dionne M. S., Gordon M. D., Mabery E. M., Moule M. G., Pham L. N. other authors 2007; Drosophila eiger mutants are sensitive to extracellular pathogens. PLoS Pathog 3:e41
    [Google Scholar]
  42. Semedo T., Santos M. A., Lopes M. F., Figueiredo Marques J. J., Barreto Crespo M. T., Tenreiro R. 2003; Virulence factors in food, clinical and reference enterococci: a common trait in the genus?. Syst Appl Microbiol 26:13–22
    [Google Scholar]
  43. Sifri C. D., Mylonakis E., Singh K. V., Qin X., Garsin D. A., Murray B. E., Ausubel F. M., Calderwood S. B. 2002; Virulence effect of Enterococcus faecalis protease genes and the quorum-sensing locus fsr in Caenorhabditis elegans and mice. Infect Immun 70:5647–5650
    [Google Scholar]
  44. Singh K. V., Nallapareddy S. R., Nannini E. C., Murray B. E. 2005; Fsr-independent production of protease(s) may explain the lack of attenuation of an Enterococcus faecalis fsr mutant versus a gelE- sprE mutant in induction of endocarditis. Infect Immun 73:4888–4894
    [Google Scholar]
  45. Tannock G. W., Cook G. 2002; Enterococci as members of the intestinal microflora of humans. In The Enterococci: Pathogenesis, Molecular Biology and Antibiotic Resistance pp 101–131 Edited by Gilmore M. S. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  46. Vallet-Gely I., Lemaitre B., Boccard F. 2008; Bacterial strategies to overcome insect defences. Nat Rev Microbiol 6:302–313
    [Google Scholar]
  47. Xu J., Olson M. E., Kahn M. L., Hurlbert R. E. 1991; Characterization of Tn 5-induced mutants of Xenorhabdus nematophilus ATCC 19061. Appl Environ Microbiol 57:1173–1180
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.030775-0
Loading
/content/journal/micro/10.1099/mic.0.030775-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error