Functional analyses of genes in Free

Abstract

genes constitute the largest gene family in , with 24 members mostly located in the subtelomeric regions of chromosomes. Little information is available about genes, other than expression data for some members. In this study, we systematically compared the sequences of all 24 members, examined the expression of , , , and in response to stresses, and investigated the stability of all Pau proteins. The chromosomal localization, synteny and sequence analyses revealed that genes could have been amplified by segmental and retroposition duplication through mechanisms of chromosomal end translocation and Ty-associated recombination. The coding sequences diverged through nucleotide substitution and insertion/deletion of one to four codons, thus causing changes in amino acids, truncation or extension of Pau proteins. Pairwise comparison of non-coding regions revealed little homology in flanking sequences of some members. All 24 promoters contain a TATA box, and 22 promoters contain at least one copy of the anaerobic response element and the aerobic repression motif. Differential expression was observed among , , , and in response to stress, with having the highest capacity to be induced by anaerobic conditions, low temperature and wine fermentations. Furthermore, Pau proteins with 124 aa were less stable than those with 120 or 122 aa. Our results indicate that duplicated genes have been evolving, and the individual Pau proteins might possess specific roles for the adaptation of to certain environmental stresses.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.030726-0
2009-12-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/12/4036.html?itemId=/content/journal/micro/10.1099/mic.0.030726-0&mimeType=html&fmt=ahah

References

  1. Abramova N. E., Sertil O., Mehta S., Lowry C. V. 2001a; Reciprocal regulation of anaerobic and aerobic cell wall mannoprotein gene expression in Saccharomyces cerevisiae . J Bacteriol 183:2881–2887
    [Google Scholar]
  2. Abramova N. E., Cohen B. D., Sertil O., Kapoor R., Davies K. J., Lowry C. V. 2001b; Regulatory mechanisms controlling expression of the DAN/ TIR mannoprotein genes during anaerobic remodelling of the cell wall in Saccharomyces cerevisiae . Genetics 157:1169–1177
    [Google Scholar]
  3. Ai W., Bertram P. G., Tsang C. K., Chan T. F., Zheng X. F. 2002; Regulation of subtelomeric silencing during stress response. Mol Cell 10:1295–1305
    [Google Scholar]
  4. Alimardani P., Regnacq M., Moreau-Vauzelle C., Ferreira T., Rossignol T., Blondin B., Berges T. 2004; SUT1-promoted sterol uptake involves the ABC transporter Aus1 and the mannoprotein Dan1 whose synergistic action is sufficient for this process. Biochem J 381:195–202
    [Google Scholar]
  5. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. 1997; Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402
    [Google Scholar]
  6. Ausubel F. M., Brent R., Kinston R. E., Moore D. D., Scidman J. D., Smith J. A., Struhl K. 1999 Short Protocols in Molecular Biology , 4th edn. New York: Wiley;
    [Google Scholar]
  7. Basehoar A. D., Zanton S. J., Pugh B. F. 2004; Identification and distinct regulation of yeast TATA box-containing genes. Cell 116:699–709
    [Google Scholar]
  8. Blandin G., Durrens P., Tekaia F., Aigle M., Bolotin-Fukuhara M., Bon E., Casaregola S., de Montigny J., Gaillardin C. other authors 2000; Genomic exploration of the hemiascomycetous yeasts: 4. The genome of Saccharomyces cerevisiae revisited. FEBS Lett 487:31–36
    [Google Scholar]
  9. Boeke J. D., LaCroute F., Fink G. R. 1984; A positive selection for mutants lacking orotidine-5′-phosphate decarboxylase activity in yeast: 5-fluoro-orotic acid resistance. Mol Gen Genet 197:345–346
    [Google Scholar]
  10. Byrne K. P., Wolfe K. H. 2006; Visualizing syntenic relationships among the hemiascomycetes with the yeast gene order browser. Nucleic Acids Res 34:D452–D455
    [Google Scholar]
  11. Cohen B. D., Sertil O., Abramova N. E., Davies K. J., Lowry C. V. 2001; Induction and repression of DAN1 and the family of anaerobic mannoprotein genes in Saccharomyces cerevisiae occurs through a complex array of regulatory sites. Nucleic Acids Res 29:799–808
    [Google Scholar]
  12. Davies B. S., Rine J. 2006; A role for sterol levels in oxygen sensing in Saccharomyces cerevisiae . Genetics 174:191–201
    [Google Scholar]
  13. Despons L., Wirth B., Louis V. L., Potier S., Souciet J. L. 2006; An evolutionary scenario for one of the largest yeast gene families. Trends Genet 22:10–15
    [Google Scholar]
  14. Fabre E., Muller H., Therizols P., Lafontaine I., Dujon B., Fairhead C. 2005; Comparative genomics in hemiascomycete yeasts: evolution of sex, silencing, and subtelomeres. Mol Biol Evol 22:856–873
    [Google Scholar]
  15. Goffeau A., Barrell B. G., Bussey H., Davis R. W., Dujon B., Feldmann H., Galibert F., Hoheisel J. D., Jacq C. & other authors; 1996; Life with 6000 genes. Science 274:546–567
    [Google Scholar]
  16. Gu Z., Nicolae D., Lu H. H., Li W. H. 2002; Rapid divergence in expression between duplicate genes inferred from microarray data. Trends Genet 18:609–613
    [Google Scholar]
  17. Homma T., Iwahashi H., Komatsu Y. 2003; Yeast gene expression during growth at low temperature. Cryobiology 46:230–237
    [Google Scholar]
  18. Hongay C., Jia N., Bard M., Winston F. 2002; Mot3 is a transcriptional repressor of ergosterol biosynthetic genes and is required for normal vacuolar function in Saccharomyces cerevisiae . EMBO J 21:4114–4124
    [Google Scholar]
  19. Kellis M., Patterson N., Endrizzi M., Birren B., Lander E. S. 2003; Sequencing and comparison of yeast species to identify genes and regulatory elements. Nature 423:241–254
    [Google Scholar]
  20. Kong H., Landherr L. L., Frohlich M. W., Leebens-Mack J., Ma H., dePamphilis C. W. 2007; Patterns of gene duplication in the plant SKP1 gene family in angiosperms: evidence for multiple mechanisms of rapid gene birth. Plant J 50:873–885
    [Google Scholar]
  21. Kumar S., Tamura K., Nei M. 2004; mega3: integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment. Brief Bioinform 5:150–163
    [Google Scholar]
  22. Luo Z., van Vuuren H. J. J. 2008; Stress-induced production, processing and stability of a seripauperin protein, Pau5p, in Saccharomyces cerevisiae . FEMS Yeast Res 8:374–385
    [Google Scholar]
  23. Lynch M., Conery J. S. 2000; The evolutionary fate and consequences of duplicate genes. Science 290:1151–1155
    [Google Scholar]
  24. Marks V. D., Ho Sui S. J., Erasmus D., van der Merwe G. K., Brumm J., Wasserman W. W., Bryan J., van Vuuren H. J. J. 2008; Dynamics of the yeast transcriptome during wine fermentation reveals a novel fermentation stress response. FEMS Yeast Res 8:35–52
    [Google Scholar]
  25. Notredame C., Higgins D. G., Heringa J. 2000; T-coffee: a novel method for fast and accurate multiple sequence alignment. J Mol Biol 302:205–217
    [Google Scholar]
  26. Ohno S. 1970 Evolution by Gene Duplication New York: Springer;
    [Google Scholar]
  27. Pan D., Zhang L. 2008; Tandemly arrayed genes in vertebrate genomes. Comp Funct Genomics 545269
    [Google Scholar]
  28. Pryde F. E., Gorham H. C., Louis E. J. 1997; Chromosome ends: all the same under their caps. Curr Opin Genet Dev 7:822–828
    [Google Scholar]
  29. Rachidi N., Martinez M. J., Barre P., Blondin B. 2000; Saccharomyces cerevisiae PAU genes are induced by anaerobiosis. Mol Microbiol 35:1421–1430
    [Google Scholar]
  30. Rossignol T., Dulau L., Julien A., Blondin B. 2003; Genome-wide monitoring of wine yeast gene expression during alcoholic fermentation. Yeast 20:1369–1385
    [Google Scholar]
  31. Sahara T., Goda T., Ohgiya S. 2002; Comprehensive expression analysis of time-dependent genetic responses in yeast cells to low temperature. J Biol Chem 277:50015–50021
    [Google Scholar]
  32. Sertil O., Kapoor R., Cohen B. D., Abramova N., Lowry C. V. 2003; Synergistic repression of anaerobic genes by Mot3 and Rox1 in Saccharomyces cerevisiae . Nucleic Acids Res 31:5831–5837
    [Google Scholar]
  33. Taylor J. S., Raes J. 2004; Duplication and divergence: the evolution of new genes and old ideas. Annu Rev Genet 38:615–643
    [Google Scholar]
  34. Teixeira M. C., Monteiro P., Jain P., Tenreiro S. R., Fernandes A. R., Mira N. P., Alenquer M., Freitas A. T., Oliveira A. L., Sá-Correia I. 2006; The YEASTRACT database: a tool for the analysis of transcription regulatory associations in Saccharomyces cerevisiae . Nucleic Acids Res 34:D446–D451
    [Google Scholar]
  35. Vik A., Rine J. 2001; Upc2p and Ecm22p, dual regulators of sterol biosynthesis in Saccharomyces cerevisiae . Mol Cell Biol 21:6395–6405
    [Google Scholar]
  36. Viswanathan M., Muthukumar G., Cong Y. S., Lenard J. 1994; Seripauperins of Saccharomyces cerevisiae: a new multigene family encoding serine-poor relatives of serine-rich proteins. Gene 148:149–153
    [Google Scholar]
  37. Wirth B., Louis V. L., Potier S., Souciet J. L., Despons L. 2005; Paleogenomics or the search for remnant duplicated copies of the yeast DUP240 gene family in intergenic areas. Mol Biol Evol 22:1764–1771
    [Google Scholar]
  38. Wyrick J. J., Holstege F. C., Jennings E. G., Causton H. C., Shore D., Grunstein M., Lander E. S., Young R. A. 1999; Chromosomal landscape of nucleosome-dependent gene expression and silencing in yeast. Nature 402:418–421
    [Google Scholar]
  39. Zhang J. 2003; Evolution by gene duplication: an update. Trends Ecol Evol 18:292–298
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.030726-0
Loading
/content/journal/micro/10.1099/mic.0.030726-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed