1887

Abstract

In many Gram-negative bacterial species, rough strains producing truncated lipopolysaccharide (LPS) generally exhibit defects in motility compared with smooth strains. However, the role that LPS plays in bacterial motility is not well understood. The goal of this study was to examine the relationship between LPS defects and motility of . wild-type strain PAO1 and three isogenic mutants with defects in the , and genes and producing truncated core oligosaccharide were investigated in terms of motility, attachment to glass and flagella expression. Compared with the wild-type, the three mutants showed significant retardation in both swarming motility on 0.5 % soft-agar plates and swimming motility on 0.3 % soft-agar plates. Moreover, attachment to abiotic surfaces was observed to be stronger in these mutants. The assembly of flagella appeared to be intact in these strains and the ability of individual cells to swim was unaffected. Flagellin proteins prepared from mutants and , defective in the production of TDP--rhamnose and GDP--rhamnose, respectively, were compared and a change in molecular mass was observed only in the mutant. These data indicated that -rhamnose, and not its enantiomer, -rhamnose, is incorporated into the flagellin glycan of PAO1. The nucleotide-activated sugar precursor TDP--rhamnose is therefore shared between LPS biosynthesis and flagellin glycosylation in PAO1. Our results suggest that although biochemical precursors are shared by LPS and flagellin glycan biosynthesis, LPS truncations probably alter flagella-mediated motility in by modulating cell-surface attachment but not flagella synthesis.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.030510-0
2009-10-01
2020-08-08
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/10/3449.html?itemId=/content/journal/micro/10.1099/mic.0.030510-0&mimeType=html&fmt=ahah

References

  1. Abeyrathne P. D., Daniels C., Poon K. K., Matewish M. J., Lam J. S.. 2005; Functional characterization of WaaL, a ligase associated with linking O-antigen polysaccharide to the core of Pseudomonas aeruginosa lipopolysaccharide. J Bacteriol187:3002–3012
    [Google Scholar]
  2. Agladze K., Wang X., Romeo T.. 2005; Spatial periodicity of Escherichia coli K-12 biofilm microstructure initiates during a reversible, polar attachment phase of development and requires the polysaccharide adhesin PGA. J Bacteriol187:8237–8246
    [Google Scholar]
  3. Al-Tahhan R. A., Sandrin T. R., Bodour A. A., Maier R. M.. 2000; Rhamnolipid-induced removal of lipopolysaccharide from Pseudomonas aeruginosa: effect on cell surface properties and interaction with hydrophobic substrates. Appl Environ Microbiol66:3262–3268
    [Google Scholar]
  4. Arora S. K., Neely A. N., Blair B., Lory S., Ramphal R.. 2005; Role of motility and flagellin glycosylation in the pathogenesis of Pseudomonas aeruginosa burn wound infections. Infect Immun73:4395–4398
    [Google Scholar]
  5. Brimer C. D., Montie T. C.. 1998; Cloning and comparison of fliC genes and identification of glycosylation in the flagellin of Pseudomonas aeruginosa a-type strains. J Bacteriol180:3209–3217
    [Google Scholar]
  6. Caiazza N. C., Shanks R. M., O'Toole G. A.. 2005; Rhamnolipids modulate swarming motility patterns of Pseudomonas aeruginosa. J Bacteriol187:7351–7361
    [Google Scholar]
  7. Castric P., Cassels F. J., Carlson R. W.. 2001; Structural characterization of the Pseudomonas aeruginosa 1244 pilin glycan. J Biol Chem276:26479–26485
    [Google Scholar]
  8. Chuanchuen R., Narasaki C. T., Schweizer H. P.. 2002; Benchtop and microcentrifuge preparation of Pseudomonas aeruginosa competent cells. Biotechniques33: 760762–763
    [Google Scholar]
  9. DiGiandomenico A., Matewish M. J., Bisaillon A., Stehle J. R., Lam J. S., Castric P.. 2002; Glycosylation of Pseudomonas aeruginosa 1244 pilin: glycan substrate specificity. Mol Microbiol46:519–530
    [Google Scholar]
  10. Genevaux P., Bauda P., DuBow M. S., Oudega B.. 1999; Identification of Tn 10 insertions in the rfaG, rfaP, and galU genes involved in lipopolysaccharide core biosynthesis that affect Escherichia coli adhesion. Arch Microbiol172:1–8
    [Google Scholar]
  11. Hancock R. E., Carey A. M.. 1979; Outer membrane of Pseudomonas aeruginosa: heat-2-mercaptoethanol-modifiable proteins. J Bacteriol140:902–910
    [Google Scholar]
  12. Hoang T. T., Karkhoff-Schweizer R. R., Kutchma A. J., Schweizer H. P.. 1998; A broad-host-range Flp- FRT recombination system for site-specific excision of chromosomally-located DNA sequences: application for isolation of unmarked Pseudomonas aeruginosa mutants. Gene212:77–86
    [Google Scholar]
  13. Huang T. P., Somers E. B., Wong A. C.. 2006; Differential biofilm formation and motility associated with lipopolysaccharide/exopolysaccharide-coupled biosynthetic genes in Stenotrophomonas maltophilia. J Bacteriol188:3116–3120
    [Google Scholar]
  14. Kim W., Surette M. G.. 2005; Prevalence of surface swarming behavior in Salmonella. J Bacteriol187:6580–6583
    [Google Scholar]
  15. Lam J. S., Mutharia L. M.. 1994; Antigen–antibody reactions. In Methods for General and Molecular Bacteriology pp104–132 Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  16. Lam J. S., Graham L. L., Lightfoot J., Dasgupta T., Beveridge T. J.. 1992; Ultrastructural examination of the lipopolysaccharides of Pseudomonas aeruginosa strains and their isogenic rough mutants by freeze-substitution. J Bacteriol174:7159–7167
    [Google Scholar]
  17. Lau P. C. Y., Dutcher J. R., Beveridge T. J., Lam J. S.. 2009; Absolute quantitation of bacterial biofilm adhesion and viscoelasticity by microbead force spectroscopy. Biophys J96:2935–2948
    [Google Scholar]
  18. Ma B., Zhang K., Hendrie C., Liang C., Li M., Doherty-Kirby A., Lajoie G.. 2003; PEAKS: powerful software for peptide de novo sequencing by tandem mass spectrometry. Rapid Commun Mass Spectrom17:2337–2342
    [Google Scholar]
  19. Makin S. A., Beveridge T. J.. 1996; The influence of A-band and B-band lipopolysaccharide on the surface characteristics and adhesion of Pseudomonas aeruginosa to surfaces. Microbiology142:299–307
    [Google Scholar]
  20. Matewish M.. 2004; The functional role of lipopolysaccharide in the cell envelope and surface proteins of Pseudomonas aeruginosa PhD thesis University of Guelph;
    [Google Scholar]
  21. Merkx-Jacques A., Obhi R. K., Bethune G., Creuzenet C.. 2004; The Helicobacter pylori flaA1 and wbpB genes control lipopolysaccharide and flagellum synthesis and function. J Bacteriol186:2253–2265
    [Google Scholar]
  22. Miller W. L., Matewish M. J., McNally D. J., Ishiyama N., Anderson E. M., Brewer D., Brisson J. R., Berghuis A. M., Lam J. S.. 2008; Flagellin glycosylation in Pseudomonas aeruginosa PAK requires the O-antigen biosynthesis enzyme WbpO. J Biol Chem283:3507–3518
    [Google Scholar]
  23. Osborn M. J., Rosen S. M., Rothfield L., Zeleznick L. D., Horecker B. L.. 1964; Lipopolysaccharide of the Gram-negative cell wall. Science145:783–789
    [Google Scholar]
  24. Overhage J., Lewenza S., Marr A. K., Hancock R. E.. 2007; Identification of genes involved in swarming motility using a Pseudomonas aeruginosa PAO1 mini-Tn 5- lux mutant library. J Bacteriol189:2164–2169
    [Google Scholar]
  25. Parker C. T., Kloser A. W., Schnaitman C. A., Stein M. A., Gottesman S., Gibson B. W.. 1992; Role of the rfaG and rfaP genes in determining the lipopolysaccharide core structure and cell surface properties of Escherichia coli K-12. J Bacteriol174:2525–2538
    [Google Scholar]
  26. Poon K. K., Westman E. L., Vinogradov E., Jin S., Lam J. S.. 2008; Functional characterization of MigA and WapR: putative rhamnosyltransferases involved in outer core oligosaccharide biosynthesis of Pseudomonas aeruginosa. J Bacteriol190:1857–1865
    [Google Scholar]
  27. Rahim R., Burrows L. L., Monteiro M. A., Perry M. B., Lam J. S.. 2000; Involvement of the rml locus in core oligosaccharide and O polysaccharide assembly in Pseudomonas aeruginosa. Microbiology146:2803–2814
    [Google Scholar]
  28. Rashid M. H., Kornberg A.. 2000; Inorganic polyphosphate is needed for swimming, swarming, and twitching motilities of Pseudomonas aeruginosa. Proc Natl Acad Sci U S A97:4885–4890
    [Google Scholar]
  29. Rocchetta H. L., Pacan J. C., Lam J. S.. 1998; Synthesis of the A-band polysaccharide sugar d-rhamnose requires Rmd and WbpW: identification of multiple AlgA homologues, WbpW and ORF488, in Pseudomonas aeruginosa. Mol Microbiol29:1419–1434
    [Google Scholar]
  30. Sadovskaya I., Brisson J. R., Lam J. S., Richards J. C., Altman E.. 1998; Structural elucidation of the lipopolysaccharide core regions of the wild-type strain PAO1 and O-chain-deficient mutant strains AK1401 and AK1012 from Pseudomonas aeruginosa serotype O5. Eur J Biochem255:673–684
    [Google Scholar]
  31. Sadovskaya I., Brisson J. R., Thibault P., Richards J. C., Lam J. S., Altman E.. 2000; Structural characterization of the outer core and the O-chain linkage region of lipopolysaccharide from Pseudomonas aeruginosa serotype O5. Eur J Biochem267:1640–1650
    [Google Scholar]
  32. Schirm M., Arora S. K., Verma A., Vinogradov E., Thibault P., Ramphal R., Logan S. M.. 2004; Structural and genetic characterization of glycosylation of type a flagellin in Pseudomonas aeruginosa. J Bacteriol186:2523–2531
    [Google Scholar]
  33. Schweizer H. P., Hoang T. T.. 1995; An improved system for gene replacement and xylE fusion analysis in Pseudomonas aeruginosa. Gene158:15–22
    [Google Scholar]
  34. Shevchenko A., Wilm M., Vorm O., Mann M.. 1996; Mass spectrometric sequencing of proteins from silver-stained polyacrylamide gels. Anal Chem68:850–858
    [Google Scholar]
  35. Simon R., Priefer U., Puhler A.. 1983; A broad-host-range mobilization system for in vivo genetic engineering: transposon mutagenesis in Gram-negative bacteria. Biotechnology1:784–791
    [Google Scholar]
  36. Toguchi A., Siano M., Burkart M., Harshey R. M.. 2000; Genetics of swarming motility in Salmonella enterica serovar Typhimurium: critical role for lipopolysaccharide. J Bacteriol182:6308–6321
    [Google Scholar]
  37. Verma A., Schirm M., Arora S. K., Thibault P., Logan S. M., Ramphal R.. 2006; Glycosylation of b-type flagellin of Pseudomonas aeruginosa: structural and genetic basis. J Bacteriol188:4395–4403
    [Google Scholar]
  38. Wang Q., Frye J. G., McClelland M., Harshey R. M.. 2004; Gene expression patterns during swarming in Salmonella typhimurium: genes specific to surface growth and putative new motility and pathogenicity genes. Mol Microbiol52:169–187
    [Google Scholar]
  39. Woods D. E., Lam J. S., Paranchych W., Speert D. P., Campbell M., Godfrey A. J.. 1997; Correlation of Pseudomonas aeruginosa virulence factors from clinical and environmental isolates with pathogenicity in the neutropenic mouse. Can J Microbiol43:541–551
    [Google Scholar]
  40. Yang H., Matewish M., Loubens I., Storey D. G., Lam J. S., Jin S.. 2000; migA, a quorum-responsive gene of Pseudomonas aeruginosa, is highly expressed in the cystic fibrosis lung environment and modifies low-molecular-mass lipopolysaccharide. Microbiology146:2509–2519
    [Google Scholar]
  41. Yanisch-Perron C., Vieira J., Messing J.. 1985; Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene33:103–119
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.030510-0
Loading
/content/journal/micro/10.1099/mic.0.030510-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error