1887

Abstract

sp. strain PPD can metabolize phenanthrene as the sole source of carbon and energy via the ‘phthalic acid’ route. The key enzyme, 1-hydroxy-2-naphthoic acid dioxygenase (1-HNDO, EC 1.13.11.38), was purified to homogeneity using a 3-hydroxy-2-naphthoic acid (3-H2NA)-affinity matrix. The enzyme was a homotetramer with a native molecular mass of 160 kDa and subunit molecular mass of ∼39 kDa. It required Fe(II) as the cofactor and was specific for 1-hydroxy-2-naphthoic acid (1-H2NA), with 13.5 μM and 114 μmol min mg. 1-HNDO failed to show activity with gentisic acid, salicylic acid and other hydroxynaphthoic acids tested. Interestingly, the enzyme showed substrate inhibition with a of 116 μM. 1-HNDO was found to be competitively inhibited by 3-H2NA with a of 24 μM. Based on the pH-dependent spectral changes, the enzyme reaction product was identified as 2-carboxybenzalpyruvic acid. Under anaerobic conditions, the enzyme failed to convert 1-H2NA to 2-carboxybenzalpyruvic acid. Stoichiometric studies showed the incorporation of 1 mol O into the substrate to yield 1 mol product. These results suggest that 1-HNDO from sp. strain PPD is an extradiol-type ring-cleaving dioxygenase.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.030460-0
2009-09-01
2021-05-10
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/9/3083.html?itemId=/content/journal/micro/10.1099/mic.0.030460-0&mimeType=html&fmt=ahah

References

  1. Adachi K., Iwayama Y., Taniok H., Takeda Y. 1966; Purification and properties of homogentisate oxygenase from Pseudomonas fluorescens . Biochim Biophys Acta 118:88–97
    [Google Scholar]
  2. Adachi K., Iwabuchi T., Sano H., Harayama S. 1999; Structure of the ring cleavage product of 1-hydroxy-2-naphthoate, an intermediate of the phenanthrene-degradative pathway of Nocardioides sp. strain KP7. J Bacteriol 181:757–763
    [Google Scholar]
  3. Adams M. A., Singh V. K., Keller B. O., Jia Z. 2006; Structural and biochemical characterization of gentisate 1,2-dioxygenase from Escherichia coli O157 : H7. Mol Microbiol 61:1469–1484
    [Google Scholar]
  4. Arciero D. M., Lipscomb J. D. 1986; Binding a 17O-labeled substrate and inhibitors to protocatechuate 4,5-dioxygenase nitrosyl complex: evidence for direct substrate binding to the active site Fe2+ of extradiol dioxygenases. J Biol Chem 261:2170–2178
    [Google Scholar]
  5. Barnsley E. A. 1983; Phthalate pathway of phenanthrene metabolism: formation of 2′-carboxybenzalpyruvate. J Bacteriol 154:113–117
    [Google Scholar]
  6. Bradford M. M. 1976; A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254
    [Google Scholar]
  7. Bucker M., Glatt H. R., Platt K. L., Avnir D., Ittah Y., Blum J., Oesch F. 1979; Mutagenicity of phenanthrene and phenanthrene K-region derivatives. Mutat Res 66:337–348
    [Google Scholar]
  8. Chang H. K., Zylstra G. J. 1999; Characterization of the phthalate permease OphD from Burkholderia cepacia ATCC 17616. J Bacteriol 181:6197–6199
    [Google Scholar]
  9. Crawford R. L., Hutton S. W., Chapman P. J. 1975; Purification and properties of gentisate 1,2-dioxygenase from Moraxella osloensis . J Bacteriol 121:794–799
    [Google Scholar]
  10. Davis M. I., Orville A. M., Neese F., Zaleski J. M., Lipscomb J. D., Solomon E. I. 2002; Spectroscopic and electronic structure studies of protocatechuate 3,4-dioxygenase: nature of tyrosinate-Fe(III) bonds and their contribution to reactivity. J Am Chem Soc 124:602–614
    [Google Scholar]
  11. Deveryshetty J., Suvekbala V., Varadamshetty G., Phale P. S. 2007; Metabolism of 2-, 3- and 4-hydroxybenzoates by soil isolates Alcaligenes sp. strain PPH and Pseudomonas sp. strain PPD. FEMS Microbiol Lett 268:59–66
    [Google Scholar]
  12. Doddamani H. P., Ninnekar H. Z. 2000; Biodegradation of phenanthrene by a Bacillus species. Curr Microbiol 41:11–14
    [Google Scholar]
  13. Evans W. C., Fernley H. N., Griffiths E. 1965; Oxidative metabolism of phenanthrene and anthracene by soil pseudomonads. The ring-fission mechanism. Biochem J 95:819–831
    [Google Scholar]
  14. Feng Y., Khoo H. E., Poh C. L. 1999; Purification and characterization of gentisate 1,2-dioxygenases from Pseudomonas alcaligenes NCIB 9867 and Pseudomonas putida NCIB 9869. Appl Environ Microbiol 65:946–950
    [Google Scholar]
  15. Ghosh D. K., Mishra A. K. 1983; Oxidation of phenanthrene by a strain of Micrococcus: evidence of protocatechuate pathway. Curr Microbiol 9:219–224
    [Google Scholar]
  16. Harpel M. R., Lipscomb J. D. 1990; Gentisate 1,2-dioxygenase from Pseudomonas. Purification, characterization, and comparison of the enzymes from Pseudomonas testosteroni and Pseudomonas acidovorans . J Biol Chem 265:6301–6311
    [Google Scholar]
  17. Hayaishi O., Hoshimoto K. 1950; Pyrocatecase, a new enzyme catalyzing oxidative breakdown of pyrocatechin. J Biochem 37:371–374
    [Google Scholar]
  18. Hintner J. P., Lechner C., Riegert U., Kuhm A. E., Storm T., Reemtsma T., Stolz A. 2001; Direct ring fission of salicylate by a salicylate 1,2-dioxygenase activity from Pseudaminobacter salicylatoxidans . J Bacteriol 183:6936–6942
    [Google Scholar]
  19. Hintner J. P., Reemtsma T., Stolz A. 2004; Biochemical and molecular characterization of a ring fission dioxygenase with the ability to oxidize (substituted) salicylate(s) from Pseudaminobacter salicylatoxidans . J Biol Chem 279:37250–37260
    [Google Scholar]
  20. Iwabuchi T., Harayama S. 1997; Biochemical and genetic characterization of 2-carboxybenzaldehyde dehydrogenase, an enzyme involved in phenanthrene degradation by Nocardioides sp. strain KP7. J Bacteriol 179:6488–6494
    [Google Scholar]
  21. Iwabuchi T., Harayama S. 1998; Biochemical and molecular characterization of 1-hydroxy-2-naphthoate dioxygenase from Nocardioides sp. KP7. J Biol Chem 273:8332–8336
    [Google Scholar]
  22. Kita A., Kita S., Fujisawa I., Inaka K., Ishida T., Horiike K., Nozaki M., Miki K. 1999; An archetypical extradiol-cleaving catecholic dioxygenase: the crystal structure of catechol 2,3-dioxygenase (metapyrocatechase) from Pseudomonas putida mt-2. Structure 7:25–34
    [Google Scholar]
  23. Kiyohara H., Nagao K., Nomi R. 1976; Degradation of phenanthrene through o-phthalate by an Aeromonas sp. Agric Biol Chem 40:1075–1082
    [Google Scholar]
  24. Kojima Y., Itada N., Hayaishi O. 1961; Metapyrocatachase: a new catechol-cleaving enzyme. J Biol Chem 236:2223–2228
    [Google Scholar]
  25. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685
    [Google Scholar]
  26. March S. C., Parikh I., Cuatrecasas P. 1974; A simplified method for cyanogen bromide activation of agarose for affinity chromatography. Anal Biochem 60:149–152
    [Google Scholar]
  27. Mastrangelo G., Fadda E., Marzia V. 1996; Polycyclic aromatic hydrocarbons and cancer in man. Environ Health Perspect 104:1166–1170
    [Google Scholar]
  28. Matera I., Ferraroni M., Burger S., Scozzafava A., Stolz A., Briganti F. 2008; Salicylate 1,2-dioxygenase from Pseudaminobacter salicylatoxidans: crystal structure of a peculiar ring-cleaving dioxygenase. J Mol Biol 380:856–868
    [Google Scholar]
  29. Ono K., Nozaki M., Hayaishi O. 1970; Purification and some properties of protocatechuate 4,5-dioxygenase. Biochim Biophys Acta 220:224–238
    [Google Scholar]
  30. Phale P. S., Basu A., Majhi P. D., Deveryshetty J., Vamsee-Krishna C., Shrivastava R. 2007; Metabolic diversity in bacterial degradation of aromatic compounds. OMICS 11:252–279
    [Google Scholar]
  31. Prabhu Y., Phale P. S. 2003; Biodegradation of phenanthrene by Pseudomonas sp. strain PP2: novel metabolic pathway, role of biosurfactant and cell surface hydrophobicity in hydrocarbon assimilation. Appl Microbiol Biotechnol 61:342–351
    [Google Scholar]
  32. Samanta S. K., Chakraborti A. K., Jain R. K. 1999; Degradation of phenanthrene by different bacteria: evidence for novel transformation sequences involving the formation of 1-naphthol. Appl Microbiol Biotechnol 53:98–107
    [Google Scholar]
  33. Shu L., Chiou Y. M., Orville A. M., Miller M. A., Lipscomb J. D., Que L. Jr 1995; X-ray absorption spectroscopic studies of the Fe(II) active site of catechol 2,3-dioxygenase. Implications for the extradiol cleavage mechanism. Biochemistry 34:6649–6659
    [Google Scholar]
  34. Stanier R. Y., Ingraham J. L. 1954; Protocatechuic acid oxidase. J Biol Chem 210:799–808
    [Google Scholar]
  35. Sugumaran M., Vaidyanathan C. S. 1978; Affinity chromatography of homogentisate 1,2-dioxygenase from Aspegillus niger . FEMS Microbiol Lett 4:343–347
    [Google Scholar]
  36. Vamsee-Krishna C., Phale P. S. 2008; Bacterial degradation of phthalate isomers and their esters. Indian J Microbiol 48:19–34
    [Google Scholar]
  37. Vamsee-Krishna C., Mohan Y., Phale P. S. 2006; Biodegradation of phthalate isomers by Pseudomonas aeruginosa PP4, Pseudomonas sp. PPD and Acinetobacter lwoffii ISP4. Appl Microbiol Biotechnol 72:1263–1269
    [Google Scholar]
  38. Vetting M. W., Ohlendorf D. H. 2000; The 1.8 Å crystal structure of catechol 1,2-dioxygenase reveals a novel hydrophobic helical zipper as a subunit linker. Structure 8:429–440
    [Google Scholar]
  39. Vetting M. W., D'Argenio D. A., Ornston L. N., Ohlendorf D. H. 2000; Structure of Acinetobacter strain ADP1 protocatechuate 3, 4-dioxygenase at 2.2 Å resolution: implications for the mechanism of an intradiol dioxygenase. Biochemistry 39:7943–7955
    [Google Scholar]
  40. Werwath J., Arfmann H. A., Pieper D. H., Timmis K. N., Wittich R. M. 1998; Biochemical and genetic characterization of a gentisate 1,2-dioxygenase from Sphingomonas sp. strain RW5. J Bacteriol 180:4171–4176
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.030460-0
Loading
/content/journal/micro/10.1099/mic.0.030460-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error