1887

Abstract

sp. strain PPD can metabolize phenanthrene as the sole source of carbon and energy via the ‘phthalic acid’ route. The key enzyme, 1-hydroxy-2-naphthoic acid dioxygenase (1-HNDO, EC 1.13.11.38), was purified to homogeneity using a 3-hydroxy-2-naphthoic acid (3-H2NA)-affinity matrix. The enzyme was a homotetramer with a native molecular mass of 160 kDa and subunit molecular mass of ∼39 kDa. It required Fe(II) as the cofactor and was specific for 1-hydroxy-2-naphthoic acid (1-H2NA), with 13.5 μM and 114 μmol min mg. 1-HNDO failed to show activity with gentisic acid, salicylic acid and other hydroxynaphthoic acids tested. Interestingly, the enzyme showed substrate inhibition with a of 116 μM. 1-HNDO was found to be competitively inhibited by 3-H2NA with a of 24 μM. Based on the pH-dependent spectral changes, the enzyme reaction product was identified as 2-carboxybenzalpyruvic acid. Under anaerobic conditions, the enzyme failed to convert 1-H2NA to 2-carboxybenzalpyruvic acid. Stoichiometric studies showed the incorporation of 1 mol O into the substrate to yield 1 mol product. These results suggest that 1-HNDO from sp. strain PPD is an extradiol-type ring-cleaving dioxygenase.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.030460-0
2009-09-01
2019-10-22
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/9/3083.html?itemId=/content/journal/micro/10.1099/mic.0.030460-0&mimeType=html&fmt=ahah

References

  1. Adachi, K., Iwayama, Y., Taniok, H. & Takeda, Y. ( 1966; ). Purification and properties of homogentisate oxygenase from Pseudomonas fluorescens. Biochim Biophys Acta 118, 88–97.[CrossRef]
    [Google Scholar]
  2. Adachi, K., Iwabuchi, T., Sano, H. & Harayama, S. ( 1999; ). Structure of the ring cleavage product of 1-hydroxy-2-naphthoate, an intermediate of the phenanthrene-degradative pathway of Nocardioides sp. strain KP7. J Bacteriol 181, 757–763.
    [Google Scholar]
  3. Adams, M. A., Singh, V. K., Keller, B. O. & Jia, Z. ( 2006; ). Structural and biochemical characterization of gentisate 1,2-dioxygenase from Escherichia coli O157 : H7. Mol Microbiol 61, 1469–1484.[CrossRef]
    [Google Scholar]
  4. Arciero, D. M. & Lipscomb, J. D. ( 1986; ). Binding a 17O-labeled substrate and inhibitors to protocatechuate 4,5-dioxygenase nitrosyl complex: evidence for direct substrate binding to the active site Fe2+ of extradiol dioxygenases. J Biol Chem 261, 2170–2178.
    [Google Scholar]
  5. Barnsley, E. A. ( 1983; ). Phthalate pathway of phenanthrene metabolism: formation of 2′-carboxybenzalpyruvate. J Bacteriol 154, 113–117.
    [Google Scholar]
  6. Bradford, M. M. ( 1976; ). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72, 248–254.[CrossRef]
    [Google Scholar]
  7. Bucker, M., Glatt, H. R., Platt, K. L., Avnir, D., Ittah, Y., Blum, J. & Oesch, F. ( 1979; ). Mutagenicity of phenanthrene and phenanthrene K-region derivatives. Mutat Res 66, 337–348.[CrossRef]
    [Google Scholar]
  8. Chang, H. K. & Zylstra, G. J. ( 1999; ). Characterization of the phthalate permease OphD from Burkholderia cepacia ATCC 17616. J Bacteriol 181, 6197–6199.
    [Google Scholar]
  9. Crawford, R. L., Hutton, S. W. & Chapman, P. J. ( 1975; ). Purification and properties of gentisate 1,2-dioxygenase from Moraxella osloensis. J Bacteriol 121, 794–799.
    [Google Scholar]
  10. Davis, M. I., Orville, A. M., Neese, F., Zaleski, J. M., Lipscomb, J. D. & Solomon, E. I. ( 2002; ). Spectroscopic and electronic structure studies of protocatechuate 3,4-dioxygenase: nature of tyrosinate-Fe(III) bonds and their contribution to reactivity. J Am Chem Soc 124, 602–614.[CrossRef]
    [Google Scholar]
  11. Deveryshetty, J., Suvekbala, V., Varadamshetty, G. & Phale, P. S. ( 2007; ). Metabolism of 2-, 3- and 4-hydroxybenzoates by soil isolates Alcaligenes sp. strain PPH and Pseudomonas sp. strain PPD. FEMS Microbiol Lett 268, 59–66.[CrossRef]
    [Google Scholar]
  12. Doddamani, H. P. & Ninnekar, H. Z. ( 2000; ). Biodegradation of phenanthrene by a Bacillus species. Curr Microbiol 41, 11–14.[CrossRef]
    [Google Scholar]
  13. Evans, W. C., Fernley, H. N. & Griffiths, E. ( 1965; ). Oxidative metabolism of phenanthrene and anthracene by soil pseudomonads. The ring-fission mechanism. Biochem J 95, 819–831.
    [Google Scholar]
  14. Feng, Y., Khoo, H. E. & Poh, C. L. ( 1999; ). Purification and characterization of gentisate 1,2-dioxygenases from Pseudomonas alcaligenes NCIB 9867 and Pseudomonas putida NCIB 9869. Appl Environ Microbiol 65, 946–950.
    [Google Scholar]
  15. Ghosh, D. K. & Mishra, A. K. ( 1983; ). Oxidation of phenanthrene by a strain of Micrococcus: evidence of protocatechuate pathway. Curr Microbiol 9, 219–224.[CrossRef]
    [Google Scholar]
  16. Harpel, M. R. & Lipscomb, J. D. ( 1990; ). Gentisate 1,2-dioxygenase from Pseudomonas. Purification, characterization, and comparison of the enzymes from Pseudomonas testosteroni and Pseudomonas acidovorans. J Biol Chem 265, 6301–6311.
    [Google Scholar]
  17. Hayaishi, O. & Hoshimoto, K. ( 1950; ). Pyrocatecase, a new enzyme catalyzing oxidative breakdown of pyrocatechin. J Biochem 37, 371–374.
    [Google Scholar]
  18. Hintner, J. P., Lechner, C., Riegert, U., Kuhm, A. E., Storm, T., Reemtsma, T. & Stolz, A. ( 2001; ). Direct ring fission of salicylate by a salicylate 1,2-dioxygenase activity from Pseudaminobacter salicylatoxidans. J Bacteriol 183, 6936–6942.[CrossRef]
    [Google Scholar]
  19. Hintner, J. P., Reemtsma, T. & Stolz, A. ( 2004; ). Biochemical and molecular characterization of a ring fission dioxygenase with the ability to oxidize (substituted) salicylate(s) from Pseudaminobacter salicylatoxidans. J Biol Chem 279, 37250–37260.[CrossRef]
    [Google Scholar]
  20. Iwabuchi, T. & Harayama, S. ( 1997; ). Biochemical and genetic characterization of 2-carboxybenzaldehyde dehydrogenase, an enzyme involved in phenanthrene degradation by Nocardioides sp. strain KP7. J Bacteriol 179, 6488–6494.
    [Google Scholar]
  21. Iwabuchi, T. & Harayama, S. ( 1998; ). Biochemical and molecular characterization of 1-hydroxy-2-naphthoate dioxygenase from Nocardioides sp. KP7. J Biol Chem 273, 8332–8336.[CrossRef]
    [Google Scholar]
  22. Kita, A., Kita, S., Fujisawa, I., Inaka, K., Ishida, T., Horiike, K., Nozaki, M. & Miki, K. ( 1999; ). An archetypical extradiol-cleaving catecholic dioxygenase: the crystal structure of catechol 2,3-dioxygenase (metapyrocatechase) from Pseudomonas putida mt-2. Structure 7, 25–34.[CrossRef]
    [Google Scholar]
  23. Kiyohara, H., Nagao, K. & Nomi, R. ( 1976; ). Degradation of phenanthrene through o-phthalate by an Aeromonas sp. Agric Biol Chem 40, 1075–1082.[CrossRef]
    [Google Scholar]
  24. Kojima, Y., Itada, N. & Hayaishi, O. ( 1961; ). Metapyrocatachase: a new catechol-cleaving enzyme. J Biol Chem 236, 2223–2228.
    [Google Scholar]
  25. Laemmli, U. K. ( 1970; ). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685.[CrossRef]
    [Google Scholar]
  26. March, S. C., Parikh, I. & Cuatrecasas, P. ( 1974; ). A simplified method for cyanogen bromide activation of agarose for affinity chromatography. Anal Biochem 60, 149–152.[CrossRef]
    [Google Scholar]
  27. Mastrangelo, G., Fadda, E. & Marzia, V. ( 1996; ). Polycyclic aromatic hydrocarbons and cancer in man. Environ Health Perspect 104, 1166–1170.[CrossRef]
    [Google Scholar]
  28. Matera, I., Ferraroni, M., Burger, S., Scozzafava, A., Stolz, A. & Briganti, F. ( 2008; ). Salicylate 1,2-dioxygenase from Pseudaminobacter salicylatoxidans: crystal structure of a peculiar ring-cleaving dioxygenase. J Mol Biol 380, 856–868.[CrossRef]
    [Google Scholar]
  29. Ono, K., Nozaki, M. & Hayaishi, O. ( 1970; ). Purification and some properties of protocatechuate 4,5-dioxygenase. Biochim Biophys Acta 220, 224–238.[CrossRef]
    [Google Scholar]
  30. Phale, P. S., Basu, A., Majhi, P. D., Deveryshetty, J., Vamsee-Krishna, C. & Shrivastava, R. ( 2007; ). Metabolic diversity in bacterial degradation of aromatic compounds. OMICS 11, 252–279.[CrossRef]
    [Google Scholar]
  31. Prabhu, Y. & Phale, P. S. ( 2003; ). Biodegradation of phenanthrene by Pseudomonas sp. strain PP2: novel metabolic pathway, role of biosurfactant and cell surface hydrophobicity in hydrocarbon assimilation. Appl Microbiol Biotechnol 61, 342–351.[CrossRef]
    [Google Scholar]
  32. Samanta, S. K., Chakraborti, A. K. & Jain, R. K. ( 1999; ). Degradation of phenanthrene by different bacteria: evidence for novel transformation sequences involving the formation of 1-naphthol. Appl Microbiol Biotechnol 53, 98–107.[CrossRef]
    [Google Scholar]
  33. Shu, L., Chiou, Y. M., Orville, A. M., Miller, M. A., Lipscomb, J. D. & Que, L., Jr ( 1995; ). X-ray absorption spectroscopic studies of the Fe(II) active site of catechol 2,3-dioxygenase. Implications for the extradiol cleavage mechanism. Biochemistry 34, 6649–6659.[CrossRef]
    [Google Scholar]
  34. Stanier, R. Y. & Ingraham, J. L. ( 1954; ). Protocatechuic acid oxidase. J Biol Chem 210, 799–808.
    [Google Scholar]
  35. Sugumaran, M. & Vaidyanathan, C. S. ( 1978; ). Affinity chromatography of homogentisate 1,2-dioxygenase from Aspegillus niger. FEMS Microbiol Lett 4, 343–347.[CrossRef]
    [Google Scholar]
  36. Vamsee-Krishna, C. & Phale, P. S. ( 2008; ). Bacterial degradation of phthalate isomers and their esters. Indian J Microbiol 48, 19–34.[CrossRef]
    [Google Scholar]
  37. Vamsee-Krishna, C., Mohan, Y. & Phale, P. S. ( 2006; ). Biodegradation of phthalate isomers by Pseudomonas aeruginosa PP4, Pseudomonas sp. PPD and Acinetobacter lwoffii ISP4. Appl Microbiol Biotechnol 72, 1263–1269.[CrossRef]
    [Google Scholar]
  38. Vetting, M. W. & Ohlendorf, D. H. ( 2000; ). The 1.8 Å crystal structure of catechol 1,2-dioxygenase reveals a novel hydrophobic helical zipper as a subunit linker. Structure 8, 429–440.[CrossRef]
    [Google Scholar]
  39. Vetting, M. W., D'Argenio, D. A., Ornston, L. N. & Ohlendorf, D. H. ( 2000; ). Structure of Acinetobacter strain ADP1 protocatechuate 3, 4-dioxygenase at 2.2 Å resolution: implications for the mechanism of an intradiol dioxygenase. Biochemistry 39, 7943–7955.[CrossRef]
    [Google Scholar]
  40. Werwath, J., Arfmann, H. A., Pieper, D. H., Timmis, K. N. & Wittich, R. M. ( 1998; ). Biochemical and genetic characterization of a gentisate 1,2-dioxygenase from Sphingomonas sp. strain RW5. J Bacteriol 180, 4171–4176.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.030460-0
Loading
/content/journal/micro/10.1099/mic.0.030460-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error