1887

Abstract

Petroleum-hydrocarbon-degrading bacteria were obtained after enrichment on crude oil (as a ‘chocolate mousse’) in a continuous supply of Indonesian seawater amended with nitrogen, phosphorus and iron nutrients. They were related to and strains, which are ubiquitous petroleum-hydrocarbon-degrading bacteria in marine environments, and to (96.4–96.5 % similarities in almost full-length 16S rRNA gene sequences). The -related bacteria showed high n-alkane-degrading activity, comparable to that of strain SK2. On the other hand, strains exhibited high activity for branched-alkane degradation and thus could be key bacteria for branched-alkane biodegradation in tropical seas. -related bacteria became most dominant in microcosms that simulated a crude oil spill event with Indonesian seawater. The dominance was observed in microcosms that were unamended or amended with fertilizer, suggesting that the -related strains could become dominant in the natural tropical marine environment after an accidental oil spill, and would continue to dominate in the environment after biostimulation. These results suggest that -related bacteria could be major degraders of petroleum n-alkanes spilt in the tropical sea.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.030411-0
2009-10-01
2019-10-22
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/10/3362.html?itemId=/content/journal/micro/10.1099/mic.0.030411-0&mimeType=html&fmt=ahah

References

  1. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. ( 1990; ). Basic local alignment search tool. J Mol Biol 215, 403–410.[CrossRef]
    [Google Scholar]
  2. Andreoni, V., Bernasconi, S., Colombo, M., van Beilen, J. B. & Cavalca, L. ( 2000; ). Detection of genes for alkane and naphthalene catabolism in Rhodococcus sp. strain 1BN. Environ Microbiol 2, 572–577.[CrossRef]
    [Google Scholar]
  3. Brito, E. M., Guyoneaud, R., Goni-Urriza, M., Ranchou-Peyruse, A., Verbaere, A., Crapez, M. A., Wasserman, J. C. & Duran, R. ( 2006; ). Characterization of hydrocarbonoclastic bacterial communities from mangrove sediments in Guanabara Bay, Brazil. Res Microbiol 157, 752–762.[CrossRef]
    [Google Scholar]
  4. Cappello, S., Caruso, G., Zampino, D., Monticelli, L. S., Maimone, G., Denaro, R., Tripodo, B., Troussellier, M., Yakimov, M. & Giuliano, L. ( 2007; ). Microbial community dynamics during assays of harbour oil spill bioremediation: a microscale simulation study. J Appl Microbiol 102, 184–194.[CrossRef]
    [Google Scholar]
  5. Chaillan, F., Le Fleche, A., Bury, E., Phantavong, Y. H., Grimont, P., Saliot, A. & Oudot, J. ( 2004; ). Identification and biodegradation potential of tropical aerobic hydrocarbon-degrading microorganisms. Res Microbiol 155, 587–595.[CrossRef]
    [Google Scholar]
  6. Coulon, F., McKew, B. A., Osborn, A. M., McGenity, T. J. & Timmis, K. N. ( 2007; ). Effects of temperature and biostimulation on oil-degrading microbial communities in temperate estuarine waters. Environ Microbiol 9, 177–186.[CrossRef]
    [Google Scholar]
  7. de Bruijn, F. J. ( 1992; ). Use of repetitive (repetitive extragenic palindromic and enterobacterial repetitive intergeneric consensus) sequences and the polymerase chain reaction to fingerprint the genomes of Rhizobium meliloti isolates and other soil bacteria. Appl Environ Microbiol 58, 2180–2187.
    [Google Scholar]
  8. Dunbar, J., Wong, D., Yarus, M. J. & Forney, L. J. ( 1996; ). Autoradiographic method for isolation of diverse microbial species with unique catabolic traits. Appl Environ Microbiol 62, 4180–4185.
    [Google Scholar]
  9. Dunbar, J., White, S. & Forney, L. ( 1997; ). Genetic diversity through the looking glass: effect of enrichment bias. Appl Environ Microbiol 63, 1326–1331.
    [Google Scholar]
  10. Dyksterhouse, S. E., Gray, J. P., Herwig, R. P., Lara, J. C. & Staley, J. T. ( 1995; ). Cycloclasticus pugetii gen. nov., sp. nov., an aromatic hydrocarbon-degrading bacterium from marine sediments. Int J Syst Bacteriol 45, 116–123.[CrossRef]
    [Google Scholar]
  11. Gauthier, M. J., Lafay, B., Christen, R., Fernandez, L., Acquaviva, M., Bonin, P. & Bertrand, J. C. ( 1992; ). Marinobacter hydrocarbonoclasticus gen. nov., sp. nov., a new, extremely halotolerant, hydrocarbon-degrading marine bacterium. Int J Syst Bacteriol 42, 568–576.[CrossRef]
    [Google Scholar]
  12. Golyshin, P. N., Harayama, S., Timmis, K. N. & Yakimov, M. M. ( 2005; ). Family Alcanivoraceae. In Bergey's Manual of Systematic Bacteriology, 2nd edn, vol. 2. pp. 295–299. Edited by G. M. Garrity. New York: Springer.
  13. González, J. M. & Whitman, W. B. ( 2006; ). Oceanospirillum and related genera. In The Prokaryotes. Proteobacteria: Gamma subclass, 3rd edn, vol. 6. pp. 887–915. Edited by M. Dworkin, S. Falkow, E. Rosenberg, K.-H. Schleifer & E. Stackebrandt. New York: Springer.
  14. Hara, A., Syutsubo, K. & Harayama, S. ( 2003; ). Alcanivorax which prevails in oil-contaminated seawater exhibits broad substrate specificity for alkane degradation. Environ Microbiol 5, 746–753.[CrossRef]
    [Google Scholar]
  15. Harayama, S., Kasai, Y. & Hara, A. ( 2004; ). Microbial communities in oil-contaminated seawater. Curr Opin Biotechnol 15, 205–214.[CrossRef]
    [Google Scholar]
  16. Harwati, T. U., Kasai, Y., Kodama, Y., Susilaningsih, D. & Watanabe, K. ( 2007; ). Characterization of diverse hydrocarbon-degrading bacteria isolated from Indonesian seawater. Microbes Environ 22, 412–415.[CrossRef]
    [Google Scholar]
  17. Head, I. M., Jones, D. M. & Roling, W. F. ( 2006; ). Marine microorganisms make a meal of oil. Nat Rev Microbiol 4, 173–182.[CrossRef]
    [Google Scholar]
  18. Hedlund, B. P., Geiselbrecht, A. D. & Staley, J. T. ( 2001; ). Marinobacter strain NCE312 has a Pseudomonas-like naphthalene dioxygenase. FEMS Microbiol Lett 201, 47–51.[CrossRef]
    [Google Scholar]
  19. Huu, N. B., Denner, E. B., Ha, D. T., Wanner, G. & Stan-Lotter, H. ( 1999; ). Marinobacter aquaeolei sp. nov., a halophilic bacterium isolated from a Vietnamese oil-producing well. Int J Syst Bacteriol 49, 367–375.[CrossRef]
    [Google Scholar]
  20. Kasai, Y., Kishira, H., Syutsubo, K. & Harayama, S. ( 2001; ). Molecular detection of marine bacterial populations on beaches contaminated by the Nakhodka tanker oil-spill accident. Environ Microbiol 3, 246–255.[CrossRef]
    [Google Scholar]
  21. Kasai, Y., Kishira, H. & Harayama, S. ( 2002a; ). Bacteria belonging to the genus Cycloclasticus play a primary role in the degradation of aromatic hydrocarbons released in a marine environment. Appl Environ Microbiol 68, 5625–5633.[CrossRef]
    [Google Scholar]
  22. Kasai, Y., Kishira, H., Sasaki, T., Syutsubo, K., Watanabe, K. & Harayama, S. ( 2002b; ). Predominant growth of Alcanivorax strains in oil-contaminated and nutrient-supplemented sea water. Environ Microbiol 4, 141–147.[CrossRef]
    [Google Scholar]
  23. Kloos, K., Munch, J. C. & Schloter, M. ( 2006; ). A new method for the detection of alkane-monooxygenase homologous genes (alkB) in soils based on PCR-hybridization. J Microbiol Methods 66, 486–496.[CrossRef]
    [Google Scholar]
  24. Lane, D. J. ( 1991; ). 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics, pp. 115–175. Edited by E. Stackebrandt & M. Goodfellow. Chichester, UK: Wiley.
  25. Maruyama, A., Ishiwata, H., Kitamura, K., Sunamura, M., Fujita, T., Matsuo, M. & Higashihara, T. ( 2003; ). Dynamics of microbial populations and strong selection for Cycloclasticus pugetii following the Nakhodka oil spill. Microb Ecol 46, 442–453.[CrossRef]
    [Google Scholar]
  26. McKew, B. A., Coulon, F., Osborn, A. M., Timmis, K. N. & McGenity, T. J. ( 2007; ). Determining the identity and roles of oil-metabolizing marine bacteria from the Thames estuary, UK. Environ Microbiol 9, 165–176.[CrossRef]
    [Google Scholar]
  27. Prince, R. C. ( 2005; ). The microbiology of marine oil spill bioremediation. In Petroleum Microbiology, pp. 317–335. Edited by B. Ollivier & M. Magot. Washington, DC: American Society for Microbiology.
  28. Prince, R. C., Elmendorf, D. L., Lute, J. R., Hsu, C. S., Haith, C. E., Senius, J. D., Dechert, G. J., Douglas, G. S. & Butler, E. L. ( 1994; ). 17α(H),21β(H)-hopane as a conserved internal marker for estimating the biodegradation of crude oil. Environ Sci Technol 28, 142–145.[CrossRef]
    [Google Scholar]
  29. Roling, W. F., Milner, M. G., Jones, D. M., Lee, K., Daniel, F., Swannell, R. J. & Head, I. M. ( 2002; ). Robust hydrocarbon degradation and dynamics of bacterial communities during nutrient-enhanced oil spill bioremediation. Appl Environ Microbiol 68, 5537–5548.[CrossRef]
    [Google Scholar]
  30. Roling, W. F., Milner, M. G., Jones, D. M., Fratepietro, F., Swannell, R. P., Daniel, F. & Head, I. M. ( 2004; ). Bacterial community dynamics and hydrocarbon degradation during a field-scale evaluation of bioremediation on a mudflat beach contaminated with buried oil. Appl Environ Microbiol 70, 2603–2613.[CrossRef]
    [Google Scholar]
  31. Saitou, N. & Nei, M. ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425.
    [Google Scholar]
  32. Sambrook, J., Fritsch, E. F. & Maniatis, T. ( 1989; ). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Press.
  33. Sproer, C., Lang, E., Hobeck, P., Burghardt, J., Stackebrandt, E. & Tindall, B. J. ( 1998; ). Transfer of Pseudomonas nautica to Marinobacter hydrocarbonoclasticus. Int J Syst Bacteriol 48, 1445–1448.[CrossRef]
    [Google Scholar]
  34. Stach, J. E. & Burns, R. G. ( 2002; ). Enrichment versus biofilm culture: a functional and phylogenetic comparison of polycyclic aromatic hydrocarbon-degrading microbial communities. Environ Microbiol 4, 169–182.[CrossRef]
    [Google Scholar]
  35. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. & Higgins, D. G. ( 1997; ). The clustal_x Windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25, 4876–4882.[CrossRef]
    [Google Scholar]
  36. van Beilen, J. B., Funhoff, E. G., van Loon, A., Just, A., Kaysser, L., Bouza, M., Holtackers, R., Rothlisberger, M., Li, Z. & Witholt, B. ( 2006; ). Cytochrome P450 alkane hydroxylases of the CYP153 family are common in alkane-degrading eubacteria lacking integral membrane alkane hydroxylases. Appl Environ Microbiol 72, 59–65.[CrossRef]
    [Google Scholar]
  37. Vergin, K. L., Urbach, E., Stein, J. L., DeLong, E. F., Lanoil, B. D. & Giovannoni, S. J. ( 1998; ). Screening of a fosmid library of marine environmental genomic DNA fragments reveals four clones related to members of the order Planctomycetales. Appl Environ Microbiol 64, 3075–3078.
    [Google Scholar]
  38. Watanabe, K., Teramoto, M., Futamata, H. & Harayama, S. ( 1998; ). Molecular detection, isolation, and physiological characterization of functionally dominant phenol-degrading bacteria in activated sludge. Appl Environ Microbiol 64, 4396–4402.
    [Google Scholar]
  39. Whyte, L. G., Bourbonniere, L. & Greer, C. W. ( 1997; ). Biodegradation of petroleum hydrocarbons by psychrotrophic Pseudomonas strains possessing both alkane (alk) and naphthalene (nah) catabolic pathways. Appl Environ Microbiol 63, 3719–3723.
    [Google Scholar]
  40. Yakimov, M. M., Golyshin, P. N., Lang, S., Moore, E. R., Abraham, W. R., Lunsdorf, H. & Timmis, K. N. ( 1998; ). Alcanivorax borkumensis gen. nov., sp. nov., a new, hydrocarbon-degrading and surfactant-producing marine bacterium. Int J Syst Bacteriol 48, 339–348.[CrossRef]
    [Google Scholar]
  41. Yakimov, M. M., Giuliano, L., Denaro, R., Crisafi, E., Chernikova, T. N., Abraham, W.-R., Luensdorf, H., Timmis, K. N. & Golyshin, P. N. ( 2004; ). Thalassolituus oleivorans gen. nov., sp. nov., a novel marine bacterium that obligately utilizes hydrocarbons. Int J Syst Evol Microbiol 54, 141–148.[CrossRef]
    [Google Scholar]
  42. Yakimov, M. M., Denaro, R., Genovese, M., Cappello, S., D'Auria, G., Chernikova, T. N., Timmis, K. N., Golyshin, P. N. & Giluliano, L. ( 2005; ). Natural microbial diversity in superficial sediments of Milazzo Harbor (Sicily) and community successions during microcosm enrichment with various hydrocarbons. Environ Microbiol 7, 1426–1441.[CrossRef]
    [Google Scholar]
  43. Zhuang, W. Q., Tay, J. H., Maszenan, A. M. & Tay, S. T. ( 2003; ). Isolation of naphthalene-degrading bacteria from tropical marine sediments. Water Sci Technol 47, 303–308.
    [Google Scholar]
  44. Zinjarde, S. S. & Pant, A. A. ( 2002; ). Hydrocarbon degraders from tropical marine environments. Mar Pollut Bull 44, 118–121.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.030411-0
Loading
/content/journal/micro/10.1099/mic.0.030411-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error