1887

Abstract

The hyperthermophilic archaeon is a strict anaerobe. It is therefore not expected to use the oxidative tricarboxylic acid (TCA) cycle for energy transduction. Nonetheless, its genome encodes more putative TCA cycle enzymes than the closely related and , including an aconitase (PF0201). Furthermore, a two-subunit fumarase (PF1755 and PF1754) is encoded on the genome. In the present study, these three genes were heterologously overexpressed in to enable characterization of the enzymes. PF1755 and PF1754 were shown to form a [4Fe–4S]-cluster-containing heterodimeric enzyme, able to catalyse the reversible hydratation of fumarate. The aconitase PF0201 also contained an Fe–S cluster, and catalysed the conversion from citrate to isocitrate. The fumarase belongs to the class of two-subunit, [4Fe–4S]-cluster-containing fumarate hydratases exemplified by MmcBC from ; the aconitase belongs to the aconitase A family. Aconitase probably plays a role in amino acid synthesis when the organism grows on carbohydrates. However, the function of the seemingly metabolically isolated fumarase in has yet to be established.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.030320-0
2009-09-01
2020-06-01
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/9/3015.html?itemId=/content/journal/micro/10.1099/mic.0.030320-0&mimeType=html&fmt=ahah

References

  1. Barak R., Giebel I., Eisenbach M.. 1996; The specificity of fumarate as a switching factor of the bacterial flagellar motor. Mol Microbiol19:139–144
    [Google Scholar]
  2. Cohen-Ben-Lulu G. N., Francis N. R., Shimoni E., Noy D., Davidov Y., Prasad K., Sagi Y., Cecchini G., Johnstone R. M., Eisenbach M.. 2008; The bacterial flagellar switch complex is getting more complex. EMBO J27:1134–1144
    [Google Scholar]
  3. Duderstadt R. E., Staples C. R., Brereton P. S., Adams M. W. W., Johnson M. K.. 1999; Effects of mutations in aspartate 14 on the spectroscopic properties of the [Fe3S4]+,0 clusters in Pyrococcus furiosus ferredoxin. Biochemistry38:10585–10593
    [Google Scholar]
  4. Erauso G., Reysenback A.-L., Godfroy A., Meunier J.-R., Crump B., Partensky F., Baross J. A., Marteinsson V., Barbier G.. other authors 1993; Pyrococcus abyssi sp. nov., a new hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent. Arch Microbiol160:338–349
    [Google Scholar]
  5. Flint D. H.. 1994; Initial kinetic and mechanistic characterization of Escherichia coli fumarase A. Arch Biochem Biophys311:509–516
    [Google Scholar]
  6. Flint D. H., Emptage M. H., Guest J. R.. 1992; Fumarase A from Escherichia coli: purification and characterization as an iron-sulfur cluster containing enzyme. Biochemistry31:10331–10337
    [Google Scholar]
  7. Fukuda W., Ismail Y. S., Fukui T., Atomi H., Imanaka T.. 2005; Characterization of an archaeal malic enzyme from the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1. Archaea1:293–301
    [Google Scholar]
  8. Gonzalez J. M., Masuchi Y., Robb F. T., Ammerman J. W., Maeder D. L., Yanagibayashi M., Tamaoka J., Kato C.. 1998; Pyrococcus horikoshii sp. nov., a hyperthermophilic archaeon isolated from a hydrothermal vent at the Okinawa trough. Extremophiles2:123–130
    [Google Scholar]
  9. Hentze M. W., Argos P.. 1991; Homology between IRE-BP, a regulatory RNA-binding protein, aconitase, and isopropylmalate isomerase. Nucleic Acids Res19:1739–1740
    [Google Scholar]
  10. Huynen M. A., Dandekar T., Bork P.. 1999; Variation and evolution of the citric acid cycle: a genomic perspective. Trends Microbiol7:281–291
    [Google Scholar]
  11. Kennedy M. C., Mende-Mueller L., Blondin G. A., Beinert H.. 1992; Purification and characterization of cytosolic aconitase from beef liver and its relationship to the iron-responsive element binding protein. Proc Natl Acad Sci U S A89:11730–11734
    [Google Scholar]
  12. Kim O. B., Lux S., Unden G.. 2007; Anaerobic growth of Escherichia coli on d-tartrate depends on the fumarate carrier DcuB and fumarase, rather than the l-tartrate carrier TtdT and l-tartrate dehydratase. Arch Microbiol188:583–589
    [Google Scholar]
  13. Kosaka T., Uchiyama T., Ishii S., Enoki M., Imachi H., Kamagata Y., Ohashi A., Harada H., Ikenaga H., Watanabe K.. 2006; Reconstruction and regulation of the central catabolic pathway in the thermophilic propionate-oxidizing syntroph Pelotomaculum thermopropionicum. J Bacteriol188:202–210
    [Google Scholar]
  14. Marwan W., Schäfer W., Oesterhelt D.. 1990; Signal transduction in Halobacterium depends on fumarate. EMBO J9:355–362
    [Google Scholar]
  15. Nakamura S., Ogata H.. 1967; Formation of oxaloacetate from unnatural (−)-tartrate by fumarate hydratase. Biochem J103:77P–78P
    [Google Scholar]
  16. Nakamura S., Ogata H.. 1968a; Specificity of fumarate hydratase. I. Formation of oxaloacetate from unnatural (−)-tartrate by fumarate hydratase. J Biol Chem243:528–532
    [Google Scholar]
  17. Nakamura S., Ogata H.. 1968b; Specificity of fumarate hydratase. II. Ratio of fumarate hydrating activity and (−)-tartrate-dehydrating activity. J Biol Chem243:533–537
    [Google Scholar]
  18. Pierik A. J., Wolbert R. B., Mutsaers P. H., Hagen W. R., Veeger C.. 1992; Purification and biochemical characterization of a putative [6Fe-6S] prismane-cluster-containing protein from Desulfovibrio vulgaris (Hildenborough. Eur J Biochem206:697–704
    [Google Scholar]
  19. Reaney S. K., Begg C., Bungard S. J., Guest J. R.. 1993; Identification of the l-tartrate dehydratase genes ( ttdA and ttdB) of Escherichia coli and evolutionary relationship with the class I fumarase genes. J Gen Microbiol139:1523–1530
    [Google Scholar]
  20. Schut G. J., Zhou J., Adams M. W. W.. 2001; DNA microarray analysis of the hyperthermophilic archaeon Pyrococcus furiosus: evidence for a new type of sulfur-reducing enzyme complex. J Bacteriol183:7027–7036
    [Google Scholar]
  21. Schut G. J., Brehm S. D., Datta S., Adams M. W. W.. 2003; Whole-genome DNA microarray analysis of a hyperthermophile and an archaeon: Pyrococcus furiosus grown on carbohydrates or peptides. J Bacteriol185:3935–3947
    [Google Scholar]
  22. Shimoyama T., Rajashekhara E., Ohmori D., Kosaka T., Watanabe K.. 2007; MmcBC in Pelotomaculum thermopropionicum represents a novel group of prokaryotic fumarases. FEMS Microbiol Lett270:207–213
    [Google Scholar]
  23. Siebers B., Tjaden B., Michalke K., Dörr C., Ahmed H., Zaparty M., Gordon P., Sensen C. W., Zibat A.. other authors 2004; Reconstruction of the central carbohydrate metabolism of Thermoproteus tenax by use of genomic and biochemical data. J Bacteriol186:2179–2194
    [Google Scholar]
  24. Tang Y., Guest J. R.. 1999; Direct evidence for mRNA binding and post-transcriptional regulation by Escherichia coli aconitases. Microbiology145:3069–3079
    [Google Scholar]
  25. Telser J., Lee H. I., Hoffman B. M.. 2000; Investigation of exchange couplings in [Fe3S4]+ clusters by electron spin-lattice relaxation. J Biol Inorg Chem5:369–380
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.030320-0
Loading
/content/journal/micro/10.1099/mic.0.030320-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error