1887

Abstract

is a ubiquitous bacterium that causes significant foodborne disease with high mortality rates in immunocompromised adults. In pregnant women foodborne infection can give rise to infection of the fetus resulting in miscarriage. In addition, the bacterium has recently been demonstrated to cause localized gastrointestinal symptoms, predominantly in immunocompetent individuals. The murine model of systemic infection has provided numerous insights into the mechanisms of pathogenesis of this organism. However, recent application of transcriptomic and proteomic approaches as well as the development of new model systems has allowed a focus upon factors that influence adaptation to gastrointestinal environments and adhesion to and invasion of the gastrointestinal mucosa. In addition, the availability of a large number of complete genome sequences has permitted inter-strain comparisons and the identification of factors that may influence the emergence of ‘epidemic’ phenotypes. Here we review some of the exciting recent developments in the analysis of the interaction between and the host gastrointestinal tract.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.030205-0
2009-08-01
2020-07-09
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/8/2463.html?itemId=/content/journal/micro/10.1099/mic.0.030205-0&mimeType=html&fmt=ahah

References

  1. Akerley B. J., Cotter P. A., Miller J. F.. 1995; Ectopic expression of the flagellar regulon alters development of the Bordetella-host interaction. Cell80:611–620
    [Google Scholar]
  2. Altenhoefer A., Oswald S., Sonnenborn U., Enders C., Schulze J., Hacker J., Oelschlaeger T. A.. 2004; The probiotic Escherichia coli strain Nissle 1917 interferes with invasion of human intestinal epithelial cells by different enteroinvasive bacterial pathogens. FEMS Immunol Med Microbiol40:223–229
    [Google Scholar]
  3. Andersen J. B., Roldgaard B. B., Lindner A. B., Christensen B. B., Licht T. R.. 2006; Construction of a multiple fluorescence labelling system for use in co-invasion studies of Listeria monocytogenes. BMC Microbiol6:86
    [Google Scholar]
  4. Bahey-El-Din M., Casey P. G., Griffin B. T., Gahan C. G. M.. 2008; Lactococcus lactis-expressing listeriolysin O (LLO) provides protection and specific CD8+ T cells against Listeria monocytogenes in the murine infection model. Vaccine26:5304–5314
    [Google Scholar]
  5. Bambirra F. H., Lima K. G., Franco B. D., Cara D. C., Nardi R. M., Barbosa F. H., Nicoli J. R.. 2007; Protective effect of Lactobacillus sakei 2a against experimental challenge with Listeria monocytogenes in gnotobiotic mice. Lett Appl Microbiol45:663–667
    [Google Scholar]
  6. Becker L. A., Cetin M. S., Hutkins R. W., Benson A. K.. 1998; Identification of the gene encoding the alternative sigma factor sigmaB from Listeria monocytogenes and its role in osmotolerance. J Bacteriol180:4547–4554
    [Google Scholar]
  7. Becker L. A., Evans S. N., Hutkins R. W., Benson A. K.. 2000; Role of σ B in adaptation of Listeria monocytogenes to growth at low temperature. J Bacteriol182:7083–7087
    [Google Scholar]
  8. Begley M., Gahan C. G. M., Hill C.. 2002; Bile stress response in Listeria monocytogenes LO28: adaptation, cross-protection, and identification of genetic loci involved in bile resistance. Appl Environ Microbiol68:6005–6012
    [Google Scholar]
  9. Begley M., Sleator R. D., Gahan C. G. M., Hill C.. 2005; Contribution of three bile-associated loci, bsh, pva, and btlB, to gastrointestinal persistence and bile tolerance of Listeria monocytogenes. Infect Immun73:894–904
    [Google Scholar]
  10. Begley M., Bron P. A., Heuston S., Casey P. G., Englert N., Wiesner J., Jomaa H., Gahan C. G. M., Hill C.. 2008; Analysis of the isoprenoid biosynthesis pathways in Listeria monocytogenes reveals a role for the alternative 2-C-methyl-d-erythritol 4-phosphate pathway in murine infection. Infect Immun76:5392–5401
    [Google Scholar]
  11. Bhaskaran S. S., Stebbins C. E.. 2007; Designer bugs: structural engineering to build a better mouse model. Cell Host Microbe1:241–243
    [Google Scholar]
  12. Bonazzi M., Lecuit M., Cossart P.. 2009; Listeria monocytogenes internalin and E-cadherin: from structure to pathogenesis. Cell MicrobiolFeb2: [Epub ahead of print]
    [Google Scholar]
  13. Brockstedt D. G., Giedlin M. A., Leong M. L., Bahjat K. S., Gao Y., Luckett W., Liu W., Cook D. N., Portnoy D. A., Dubensky T. W. Jr. 2004; Listeria-based cancer vaccines that segregate immunogenicity from toxicity. Proc Natl Acad Sci U S A101:13832–13837
    [Google Scholar]
  14. Brockstedt D. G., Bahjat K. S., Giedlin M. A., Liu W., Leong M., Luckett W., Gao Y., Schnupf P., Kapadia D.. other authors 2005; Killed but metabolically active microbes: a new vaccine paradigm for eliciting effector T-cell responses and protective immunity. Nat Med11:853–860
    [Google Scholar]
  15. Bron P. A., Monk I. R., Corr S. C., Hill C., Gahan C. G. M.. 2006; Novel luciferase reporter system for in vitro and organ-specific monitoring of differential gene expression in Listeria monocytogenes. Appl Environ Microbiol72:2876–2884
    [Google Scholar]
  16. Bublitz M., Polle L., Holland C., Heinz D. W., Nimtz M., Schubert W. D.. 2009; Structural basis for autoinhibition and activation of Auto, a virulence-associated peptidoglycan hydrolase of Listeria monocytogenes. Mol Microbiol71:1509–1522
    [Google Scholar]
  17. Buchrieser C.. 2007; Biodiversity of the species Listeria monocytogenes and the genus Listeria. Microbes Infect9:1147–1155
    [Google Scholar]
  18. Cabanes D., Sousa S., Cebria A., Lecuit M., Garcia-del Portillo F., Cossart P.. 2005; Gp96 is a receptor for a novel Listeria monocytogenes virulence factor, Vip, a surface protein. EMBO J24:2827–2838
    [Google Scholar]
  19. Cetin M. S., Zhang C., Hutkins R. W., Benson A. K.. 2004; Regulation of transcription of compatible solute transporters by the general stress sigma factor, σ B, in Listeria monocytogenes. J Bacteriol186:794–802
    [Google Scholar]
  20. Chaturongakul S., Raengpradub S., Wiedmann M., Boor K. J.. 2008; Modulation of stress and virulence in Listeria monocytogenes. Trends Microbiol16:388–396
    [Google Scholar]
  21. Collado M. C., Gueimonde M., Hernandez M., Sanz Y., Salminen S.. 2005; Adhesion of selected Bifidobacterium strains to human intestinal mucus and the role of adhesion in enteropathogen exclusion. J Food Prot68:2672–2678
    [Google Scholar]
  22. Conlan J. W.. 1997; Neutrophils and tumour necrosis factor-alpha are important for controlling early gastrointestinal stages of experimental murine listeriosis. J Med Microbiol46:239–250
    [Google Scholar]
  23. Corr S. C., Gahan C. G. M., Hill C.. 2007a; Impact of selected Lactobacillus and Bifidobacterium species on Listeria monocytogenes infection and the mucosal immune response. FEMS Immunol Med Microbiol50:380–388
    [Google Scholar]
  24. Corr S. C., Li Y., Riedel C. U., O'Toole P. W., Hill C., Gahan C. G. M.. 2007b; Bacteriocin production as a mechanism for the antiinfective activity of Lactobacillus salivarius UCC118. Proc Natl Acad Sci U S A104:7617–7621
    [Google Scholar]
  25. Cossart P.. 2007; Listeriology (1926–2007): the rise of a model pathogen. Microbes Infect9:1143–1146
    [Google Scholar]
  26. Cotter P. D., Gahan C. G., Hill C.. 2001; A glutamate decarboxylase system protects Listeria monocytogenes in gastric fluid. Mol Microbiol40:465–475
    [Google Scholar]
  27. Cotter P. D., Draper L. A., Lawton E. M., Daly K. M., Groeger D. S., Casey P. G., Ross R. P., Hill C.. 2008; Listeriolysin S, a novel peptide haemolysin associated with a subset of lineage I Listeria monocytogenes. PLoS Pathog4:e1000144
    [Google Scholar]
  28. Czuprynski C. J.. 2005; Listeria monocytogenes: silage, sandwiches and science. Anim Health Res Rev6:211–217
    [Google Scholar]
  29. Czuprynski C. J., Balish E.. 1981; Pathogenesis of Listeria monocytogenes for gnotobiotic rats. Infect Immun32:323–331
    [Google Scholar]
  30. Czuprynski C. J., Faith N. G., Steinberg H.. 2002; Ability of the Listeria monocytogenes strain Scott A to cause systemic infection in mice infected by the intragastric route. Appl Environ Microbiol68:2893–2900
    [Google Scholar]
  31. Disson O., Grayo S., Huillet E., Nikitas G., Langa-Vives F., Dussurget O., Ragon M., Le Monnier A., Babinet C.. other authors 2008; Conjugated action of two species-specific invasion proteins for fetoplacental listeriosis. Nature455:1114–1118
    [Google Scholar]
  32. Dramsi S., Bourdichon F., Cabanes D., Lecuit M., Fsihi H., Cossart P.. 2004; FbpA, a novel multifunctional Listeria monocytogenes virulence factor. Mol Microbiol53:639–649
    [Google Scholar]
  33. Dussurget O., Cabanes D., Dehoux P., Lecuit M., Buchrieser C., Glaser P., Cossart P.. European Listeria Genome Consortium 2002; Listeria monocytogenes bile salt hydrolase is a PrfA-regulated virulence factor involved in the intestinal and hepatic phases of listeriosis. Mol Microbiol45:1095–1106
    [Google Scholar]
  34. Ferreira A., O'Byrne C. P., Boor K. J.. 2001; Role of σ B in heat, ethanol, acid, and oxidative stress resistance and during carbon starvation in Listeria monocytogenes. Appl Environ Microbiol67:4454–4457
    [Google Scholar]
  35. Fraser K. R., Sue D., Wiedmann M., Boor K., O'Byrne C. P.. 2003; Role of σ B in regulating the compatible solute uptake systems of Listeria monocytogenes: osmotic induction of opuC is σ B dependent. Appl Environ Microbiol69:2015–2022
    [Google Scholar]
  36. Fuhs G. W., Seeliger H. P.. 1961; On flagellation of Listeria monocytogenes. Electronoptic and serological studies. Arch Mikrobiol40:153–162
    [Google Scholar]
  37. Gahan C. G., Hill C.. 2005; Gastrointestinal phase of Listeria monocytogenes infection. J Appl Microbiol98:1345–1353
    [Google Scholar]
  38. Garner M. R., Njaa B. L., Wiedmann M., Boor K. J.. 2006; σ B contributes to Listeria monocytogenes gastrointestinal infection but not to systemic spread in the guinea pig infection model. Infect Immun74:876–886
    [Google Scholar]
  39. Giron J. A., Torres A. G., Freer E., Kaper J. B.. 2002; The flagella of enteropathogenic Escherichia coli mediate adherence to epithelial cells. Mol Microbiol44:361–379
    [Google Scholar]
  40. Glaser P., Frangeul L., Buchrieser C., Rusniok C., Amend A., Baquero F., Berche P., Bloecker H., Brandt P.. other authors 2001; Comparative genomics of Listeria species. Science294:849–852
    [Google Scholar]
  41. Gottlieb C. T., Thomsen L. E., Ingmer H., Mygind P. H., Kristensen H. H., Gram L.. 2008; Antimicrobial peptides effectively kill a broad spectrum of Listeria monocytogenes and Staphylococcus aureus strains independently of origin, sub-type, or virulence factor expression. BMC Microbiol8:205
    [Google Scholar]
  42. Gray M. J., Freitag N. E., Boor K. J.. 2006; How the bacterial pathogen Listeria monocytogenes mediates the switch from environmental Dr. Jekyll to pathogenic Mr. Hyde. Infect Immun74:2505–2512
    [Google Scholar]
  43. Grundling A., Burrack L. S., Bouwer H. G., Higgins D. E.. 2004; Listeria monocytogenes regulates flagellar motility gene expression through MogR, a transcriptional repressor required for virulence. Proc Natl Acad Sci U S A101:12318–12323
    [Google Scholar]
  44. Guimaraes V. D., Gabriel J. E., Lefevre F., Cabanes D., Gruss A., Cossart P., Azevedo V., Langella P.. 2005; Internalin-expressing Lactococcus lactis is able to invade small intestine of guinea pigs and deliver DNA into mammalian epithelial cells. Microbes Infect7:836–844
    [Google Scholar]
  45. Hain T., Steinweg C., Kuenne C. T., Billion A., Ghai R., Chatterjee S. S., Domann E., Kärst U., Goesmann A.. other authors 2006; Whole-genome sequence of Listeria welshimeri reveals common steps in genome reduction with Listeria innocua as compared to Listeria monocytogenes. J Bacteriol188:7405–7415
    [Google Scholar]
  46. Hain T., Hossain H., Chatterjee S. S., Machata S., Volk U., Wagner S., Brors B., Haas S., Kuenne C. T.. other authors 2008; Temporal transcriptomic analysis of the Listeria monocytogenes EGD-e σ B regulon. BMC Microbiol8:20
    [Google Scholar]
  47. Hamon M., Bierne H., Cossart P.. 2006; Listeria monocytogenes: a multifaceted model. Nat Rev Microbiol4:423–434
    [Google Scholar]
  48. Hardy J., Francis K. P., DeBoer M., Chu P., Gibbs K., Contag C. H.. 2004; Extracellular replication of Listeria monocytogenes in the murine gall bladder. Science303:851–853
    [Google Scholar]
  49. Hu Y., Oliver H. F., Raengpradub S., Palmer M. E., Orsi R. H., Wiedmann M., Boor K. J.. 2007a; Transcriptomic and phenotypic analyses suggest a network between the transcriptional regulators HrcA and σ B in Listeria monocytogenes. Appl Environ Microbiol73:7981–7991
    [Google Scholar]
  50. Hu Y., Raengpradub S., Schwab U., Loss C., Orsi R. H., Wiedmann M., Boor K. J.. 2007b; Phenotypic and transcriptomic analyses demonstrate interactions between the transcriptional regulators CtsR and σ B in Listeria monocytogenes. Appl Environ Microbiol73:7967–7980
    [Google Scholar]
  51. Huleatt J. W., Pilip I., Kerksiek K., Pamer E. G.. 2001; Intestinal and splenic T cell responses to enteric Listeria monocytogenes infection: distinct repertoires of responding CD8 T lymphocytes. J Immunol166:4065–4073
    [Google Scholar]
  52. Inagaki H., Suzuki T., Nomoto K., Yoshikai Y.. 1996; Increased susceptibility to primary infection with Listeria monocytogenes in germfree mice may be due to lack of accumulation of L-selectin+ CD44+ T cells in sites of inflammation. Infect Immun64:3280–3287
    [Google Scholar]
  53. Ireton K.. 2007; Entry of the bacterial pathogen Listeria monocytogenes into mammalian cells. Cell Microbiol9:1365–1375
    [Google Scholar]
  54. Jacquet C., Doumith M., Gordon J. I., Martin P. M., Cossart P., Lecuit M.. 2004; A molecular marker for evaluating the pathogenic potential of foodborne Listeria monocytogenes. J Infect Dis189:2094–2100
    [Google Scholar]
  55. Jeffers G. T., Bruce J. L., McDonough P. L., Scarlett J., Boor K. J., Wiedmann M.. 2001; Comparative genetic characterization of Listeria monocytogenes isolates from human and animal listeriosis cases. Microbiology147:1095–1104
    [Google Scholar]
  56. Jones B. V., Begley M., Hill C., Gahan C. G., Marchesi J. R.. 2008; Functional and comparative metagenomic analysis of bile salt hydrolase activity in the human gut microbiome. Proc Natl Acad Sci U S A105:13580–13585
    [Google Scholar]
  57. Kazmierczak M. J., Mithoe S. C., Boor K. J., Wiedmann M.. 2003; Listeria monocytogenes σ B regulates stress response and virulence functions. J Bacteriol185:5722–5734
    [Google Scholar]
  58. Khelef N., Lecuit M., Bierne H., Cossart P.. 2006; Species specificity of the Listeria monocytogenes InlB protein. Cell Microbiol8:457–470
    [Google Scholar]
  59. Kim S. H., Bakko M. K., Knowles D., Borucki M. K.. 2004; Oral inoculation of A/J mice for detection of invasiveness differences between Listeria monocytogenes epidemic and environmental strains. Infect Immun72:4318–4321
    [Google Scholar]
  60. Kim K. P., Jagadeesan B., Burkholder K. M., Jaradat Z. W., Wampler J. L., Lathrop A. A., Morgan M. T., Bhunia A. K.. 2006; Adhesion characteristics of Listeria adhesion protein (LAP)-expressing Escherichia coli to Caco-2 cells and of recombinant LAP to eukaryotic receptor Hsp60 as examined in a surface plasmon resonance sensor. FEMS Microbiol Lett256:324–332
    [Google Scholar]
  61. Kobayashi K. S., Chamaillard M., Ogura Y., Henegariu O., Inohara N., Nunez G., Flavell R. A.. 2005; Nod2-dependent regulation of innate and adaptive immunity in the intestinal tract. Science307:731–734
    [Google Scholar]
  62. Kursar M., Bonhagen K., Kohler A., Kamradt T., Kaufmann S. H., Mittrucker H. W.. 2002; Organ-specific CD4+ T cell response during Listeria monocytogenes infection. J Immunol168:6382–6387
    [Google Scholar]
  63. Laouar A., Haridas V., Vargas D., Zhinan X., Chaplin D., van Lier R. A., Manjunath N.. 2005; CD70+ antigen-presenting cells control the proliferation and differentiation of T cells in the intestinal mucosa. Nat Immunol6:698–706
    [Google Scholar]
  64. Lecuit M.. 2007; Human listeriosis and animal models. Microbes Infect9:1216–1225
    [Google Scholar]
  65. Lecuit M., Dramsi S., Gottardi C., Fedor-Chaiken M., Gumbiner B., Cossart P.. 1999; A single amino acid in E-cadherin responsible for host specificity towards the human pathogen. Listeria monocytogenes. EMBO J18:3956–3963
    [Google Scholar]
  66. Lecuit M., Vandormael-Pournin S., Lefort J., Huerre M., Gounon P., Dupuy C., Babinet C., Cossart P.. 2001; A transgenic model for listeriosis: role of internalin in crossing the intestinal barrier. Science292:1722–1725
    [Google Scholar]
  67. Lecuit M., Sonnenburg J. L., Cossart P., Gordon J. I.. 2007; Functional genomic studies of the intestinal response to a foodborne enteropathogen in a humanized gnotobiotic mouse model. J Biol Chem282:15065–15072
    [Google Scholar]
  68. Linden S. K., Bierne H., Sabet C., Png C. W., Florin T. H., McGuckin M. A., Cossart P.. 2008; Listeria monocytogenes internalins bind to the human intestinal mucin MUC2. Arch Microbiol190:101–104
    [Google Scholar]
  69. Maa Y. F., Prestrelski S. J.. 2000; Biopharmaceutical powders: particle formation and formulation considerations. Curr Pharm Biotechnol1:283–302
    [Google Scholar]
  70. Mack D. R., Ahrne S., Hyde L., Wei S., Hollingsworth M. A.. 2003; Extracellular MUC3 mucin secretion follows adherence of Lactobacillus strains to intestinal epithelial cells in vitro. Gut52:827–833
    [Google Scholar]
  71. Mengaud J., Lecuit M., Lebrun M., Nato F., Mazie J. C., Cossart P.. 1996; Antibodies to the leucine-rich repeat region of internalin block entry of Listeria monocytogenes into cells expressing E-cadherin. Infect Immun64:5430–5433
    [Google Scholar]
  72. Milillo S. R., Badamo J. M., Wiedmann M.. 2009; Contributions to selected phenotypic characteristics of large species- and lineage-specific genomic regions in Listeria monocytogenes. Food Microbiol26:212–223
    [Google Scholar]
  73. Monk I. R., Casey P. G., Cronin M., Gahan C. G., Hill C.. 2008a; Development of multiple strain competitive index assays for Listeria monocytogenes using pIMC; a new site-specific integrative vector. BMC Microbiol8:96
    [Google Scholar]
  74. Monk I. R., Gahan C. G. M., Hill C.. 2008b; Tools for functional postgenomic analysis of Listeria monocytogenes. Appl Environ Microbiol74:3921–3934
    [Google Scholar]
  75. Moorhead S. M., Dykes G. A.. 2003; The role of the sigB gene in the general stress response of Listeria monocytogenes varies between a strain of serotype 1/2a and a strain of serotype 4c. Curr Microbiol46:461–466
    [Google Scholar]
  76. Nadon C. A., Bowen B. M., Wiedmann M., Boor K. J.. 2002; σ B contributes to PrfA-mediated virulence in Listeria monocytogenes. Infect Immun70:3948–3952
    [Google Scholar]
  77. Nelson K. E., Fouts D. E., Mongodin E. F., Ravel J., DeBoy R. T., Kolonay J. F., Rasko D. A., Angiuoli S. V., Gill S. R.. other authors 2004; Whole genome comparisons of serotype 4b and 1/2a strains of the food-borne pathogen Listeria monocytogenes reveal new insights into the core genome components of this species. Nucleic Acids Res32:2386–2395
    [Google Scholar]
  78. Neudeck B. L., Loeb J. M., Faith N. G., Czuprynski C. J.. 2004; Intestinal P glycoprotein acts as a natural defense mechanism against Listeria monocytogenes. Infect Immun72:3849–3854
    [Google Scholar]
  79. Nightingale K. K., Windham K., Wiedmann M.. 2005; Evolution and molecular phylogeny of Listeria monocytogenes isolated from human and animal listeriosis cases and foods. J Bacteriol187:5537–5551
    [Google Scholar]
  80. Ollinger J., Bowen B., Wiedmann M., Boor K. J., Bergholz T. M.. 2009; Listeria monocytogenes σ B modulates PrfA-mediated virulence factor expression. Infect Immun77:2113–2124
    [Google Scholar]
  81. O'Neil H. S., Marquis H.. 2006; Listeria monocytogenes flagella are used for motility, not as adhesins, to increase host cell invasion. Infect Immun74:6675–6681
    [Google Scholar]
  82. Peel M., Donachie W., Shaw A.. 1988; Temperature-dependent expression of flagella of Listeria monocytogenes studied by electron microscopy, SDS-PAGE and western blotting. J Gen Microbiol134:2171–2178
    [Google Scholar]
  83. Pentecost M., Otto G., Theriot J. A., Amieva M. R.. 2006; Listeria monocytogenes invades the epithelial junctions at sites of cell extrusion. PLoS Pathog2:e3
    [Google Scholar]
  84. Raengpradub S., Wiedmann M., Boor K. J.. 2008; Comparative analysis of the σ B-dependent stress responses in Listeria monocytogenes and Listeria innocua strains exposed to selected stress conditions. Appl Environ Microbiol74:158–171
    [Google Scholar]
  85. Rafelski S. M., Theriot J. A.. 2006; Mechanism of polarization of Listeria monocytogenes surface protein ActA. Mol Microbiol59:1262–1279
    [Google Scholar]
  86. Ragon M., Wirth T., Hollandt F., Lavenir R., Lecuit M., Le Monnier A., Brisse S.. 2008; A new perspective on Listeria monocytogenes evolution. PLoS Pathog4:e1000146
    [Google Scholar]
  87. Ranson T., Bregenholt S., Lehuen A., Gaillot O., Leite-de-Moraes M. C., Herbelin A., Berche P., Di Santo J. P.. 2005; Invariant V alpha 14+ NKT cells participate in the early response to enteric Listeria monocytogenes infection. J Immunol175:1137–1144
    [Google Scholar]
  88. Rastall R. A.. 2004; Bacteria in the gut: friends and foes and how to alter the balance. J Nutr134:2022S–2026S
    [Google Scholar]
  89. Rauch M., Luo Q., Muller-Altrock S., Goebel W.. 2005; SigB-dependent in vitro transcription of prfA and some newly identified genes of Listeria monocytogenes whose expression is affected by PrfA in vivo. J Bacteriol187:800–804
    [Google Scholar]
  90. Riedel C. U., Monk I. R., Casey P. G., Morrissey D., O'Sullivan G. C., Tangney M., Hill C., Gahan C. G. M.. 2007; Improved luciferase tagging system for Listeria monocytogenes allows real-time monitoring in vivo and in vitro. Appl Environ Microbiol73:3091–3094
    [Google Scholar]
  91. Roland K. L., Tinge S. A., Killeen K. P., Kochi S. K.. 2005; Recent advances in the development of live, attenuated bacterial vectors. Curr Opin Mol Ther7:62–72
    [Google Scholar]
  92. Ryan S., Hill C., Gahan C. G.. 2008; Acid stress responses in Listeria monocytogenes. Adv Appl Microbiol65:67–91
    [Google Scholar]
  93. Ryan S., Begley M., Gahan C. G. M., Hill C.. 2009; Molecular characterization of the arginine deiminase system in Listeria monocytogenes: regulation and role in acid tolerance. Environ Microbiol11:432–445
    [Google Scholar]
  94. Sabet C., Toledo-Arana A., Personnic N., Lecuit M., Dubrac S., Poupel O., Gouin E., Nahori M. A., Cossart P., Bierne H.. 2008; The Listeria monocytogenes virulence factor InlJ is specifically expressed in vivo and behaves as an adhesin. Infect Immun76:1368–1378
    [Google Scholar]
  95. Schwab U., Bowen B., Nadon C., Wiedmann M., Boor K. J.. 2005; The Listeria monocytogenes prfAP2 promoter is regulated by sigma B in a growth phase dependent manner. FEMS Microbiol Lett245:329–336
    [Google Scholar]
  96. Seegers J. F.. 2002; Lactobacilli as live vaccine delivery vectors: progress and prospects. Trends Biotechnol20:508–515
    [Google Scholar]
  97. Seveau S., Pizarro-Cerda J., Cossart P.. 2007; Molecular mechanisms exploited by Listeria monocytogenes during host cell invasion. Microbes Infect9:1167–1175
    [Google Scholar]
  98. Shahabi V., Reyes-Reyes M., Wallecha A., Rivera S., Paterson Y., Maciag P.. 2008; Development of a Listeria monocytogenes based vaccine against prostate cancer. Cancer Immunol Immunother57:1301–1313
    [Google Scholar]
  99. Shahidi F., Han X. Q.. 1993; Encapsulation of food ingredients. Crit Rev Food Sci Nutr33:501–547
    [Google Scholar]
  100. Sheehan V. M., Sleator R. D., Fitzgerald G. F., Hill C.. 2006; Heterologous expression of BetL, a betaine uptake system, enhances the stress tolerance of Lactobacillus salivarius UCC118. Appl Environ Microbiol72:2170–2177
    [Google Scholar]
  101. Sheehan V. M., Sleator R. D., Hill C., Fitzgerald G. F.. 2007; Improving gastric transit, gastrointestinal persistence and therapeutic efficacy of the probiotic strain Bifidobacterium breve UCC2003. Microbiology153:3563–3571
    [Google Scholar]
  102. Shen A., Higgins D. E.. 2006; The MogR transcriptional repressor regulates nonhierarchal expression of flagellar motility genes and virulence in Listeria monocytogenes. PLoS Pathog2:e30
    [Google Scholar]
  103. Sleator R. D., Hill C.. 2002; Bacterial osmoadaptation: the role of osmolytes in bacterial stress and virulence. FEMS Microbiol Rev26:49–71
    [Google Scholar]
  104. Sleator R. D., Hill C.. 2006; Patho-biotechnology: using bad bugs to do good things. Curr Opin Biotechnol17:211–216
    [Google Scholar]
  105. Sleator R. D., Hill C.. 2007; Patho-biotechnology; using bad bugs to make good bugs better. Sci Prog90:1–14
    [Google Scholar]
  106. Sleator R. D., Hill C.. 2008a; ‘Bioengineered bugs' – a patho-biotechnology approach to probiotic research and applications. Med Hypotheses70:167–169
    [Google Scholar]
  107. Sleator R. D., Hill C.. 2008b; Battle of the bugs. Science321:1294–1295
    [Google Scholar]
  108. Sleator R. D., Wouters J., Gahan C. G. M., Abee T., Hill C.. 2001; Analysis of the role of OpuC, an osmolyte transport system, in salt tolerance and virulence potential of Listeria monocytogenes. Appl Environ Microbiol67:2692–2698
    [Google Scholar]
  109. Sleator R. D., Francis G. A., O'Beirne D., Gahan C. G., Hill C.. 2003a; Betaine and carnitine uptake systems in Listeria monocytogenes affect growth and survival in foods and during infection. J Appl Microbiol95:839–846
    [Google Scholar]
  110. Sleator R. D., Gahan C. G., Hill C.. 2003b; A postgenomic appraisal of osmotolerance in Listeria monocytogenes. Appl Environ Microbiol69:1–9
    [Google Scholar]
  111. Sleator R. D., Wemekamp-Kamphuis H. H., Gahan C. G. M., Abee T., Hill C.. 2005; A PrfA-regulated bile exclusion system (BilE) is a novel virulence factor in Listeria monocytogenes. Mol Microbiol55:1183–1195
    [Google Scholar]
  112. Sleator R. D., Clifford T., Hill C.. 2007; Gut osmolarity: a key environmental cue initiating the gastrointestinal phase of Listeria monocytogenes infection?. Med Hypotheses69:1090–1092
    [Google Scholar]
  113. Sue D., Fink D., Wiedmann M., Boor K. J.. 2004; σ B-dependent gene induction and expression in Listeria monocytogenes during osmotic and acid stress conditions simulating the intestinal environment. Microbiology150:3843–3855
    [Google Scholar]
  114. Swaminathan B., Gerner-Smidt P.. 2007; The epidemiology of human listeriosis. Microbes Infect9:1236–1243
    [Google Scholar]
  115. Vazquez-Boland J. A., Kuhn M., Berche P., Chakraborty T., Dominguez-Bernal G., Goebel W., Gonzalez-Zorn B., Wehland J., Kreft J.. 2001; Listeria pathogenesis and molecular virulence determinants. Clin Microbiol Rev14:584–640
    [Google Scholar]
  116. Vieira L. Q., dos Santos L. M., Neumann E., da Silva A. P., Moura L. N., Nicoli J. R.. 2008; Probiotics protect mice against experimental infections. J Clin Gastroenterol42 :Suppl. 3 Pt 2S168–S169
    [Google Scholar]
  117. Volker U., Maul B., Hecker M.. 1999; Expression of the σ B-dependent general stress regulon confers multiple stress resistance in Bacillus subtilis. J Bacteriol181:3942–3948
    [Google Scholar]
  118. Wallecha A., Maciag P. C., Rivera S., Paterson Y., Shahabi V.. 2009; Construction and characterization of an attenuated Listeria monocytogenes strain for clinical use in cancer immunotherapy. Clin Vaccine Immunol16:96–103
    [Google Scholar]
  119. Wampler J. L., Kim K. P., Jaradat Z., Bhunia A. K.. 2004; Heat shock protein 60 acts as a receptor for the Listeria adhesion protein in Caco-2 cells. Infect Immun72:931–936
    [Google Scholar]
  120. Watson D., Sleator R. D., Hill C., Gahan C. G. M.. 2008; Enhancing bile tolerance improves survival and persistence of Bifidobacterium and Lactococcus in the murine gastrointestinal tract. BMC Microbiol8:176
    [Google Scholar]
  121. Wemekamp-Kamphuis H. H., Wouters J. A., Sleator R. D., Gahan C. G. M., Hill C., Abee T.. 2002; Multiple deletions of the osmolyte transporters BetL, Gbu, and OpuC of Listeria monocytogenes affect virulence and growth at high osmolarity. Appl Environ Microbiol68:4710–4716
    [Google Scholar]
  122. Wemekamp-Kamphuis H. H., Wouters J. A., de Leeuw P. P., Hain T., Chakraborty T., Abee T.. 2004; Identification of sigma factor s σ B-controlled genes and their impact on acid stress, high hydrostatic pressure, and freeze survival in Listeria monocytogenes EGD-e. Appl Environ Microbiol70:3457–3466
    [Google Scholar]
  123. Wiedmann M.. 2002; Molecular subtyping methods for Listeria monocytogenes. J AOAC Int85:524–531
    [Google Scholar]
  124. Wiedmann M., Arvik T. J., Hurley R. J., Boor K. J.. 1998; General stress transcription factor σ B and its role in acid tolerance and virulence of Listeria monocytogenes. J Bacteriol180:3650–3656
    [Google Scholar]
  125. Wolfgang M. C., Jyot J., Goodman A. L., Ramphal R., Lory S.. 2004; Pseudomonas aeruginosa regulates flagellin expression as part of a global response to airway fluid from cystic fibrosis patients. Proc Natl Acad Sci U S A101:6664–6668
    [Google Scholar]
  126. Wollert T., Pasche B., Rochon M., Deppenmeier S., van den Heuvel J., Gruber A. D., Heinz D. W., Lengeling A., Schubert W. D.. 2007; Extending the host range of Listeria monocytogenes by rational protein design. Cell129:891–902
    [Google Scholar]
  127. Xu J., Gordon J. I.. 2003; Inaugural article: honor thy symbionts. Proc Natl Acad Sci U S A100:10452–10459
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.030205-0
Loading
/content/journal/micro/10.1099/mic.0.030205-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error