1887

Abstract

Tuberculosis remains the major cause of mortality due to a bacterial pathogen, . The molecular mechanisms of infection and persistence have not been completely elucidated for this pathogen. Studies involving nucleoid-associated proteins (NAPs), which have been related to the control and influence of virulence genes in pathogenic bacteria, can help unveil the virulence process of . Here, we describe the initial characterization of an ORF for an putative NAP. The gene was cloned and expressed, and its product purified to homogeneity. A qualitative protein–DNA binding assay was carried out by gel-retardation and the protein affinity for specific DNA sequences was assessed quantitatively by surface plasmon resonance (SPR). A stoichiometry of 10 molecules of monomeric protein per molecule of DNA was determined. The monophasic apparent dissociation rate constant values increased to a saturable level as a function of protein concentration, yielding two limiting values for the molecular recognition of proU2 DNA. A protein–DNA binding mechanism is proposed. In addition, functional complementation studies with an mutant reinforce the likelihood that the Rv3852 protein represents a novel NAP in .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.030148-0
2009-08-01
2020-01-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/8/2652.html?itemId=/content/journal/micro/10.1099/mic.0.030148-0&mimeType=html&fmt=ahah

References

  1. Andersen P.. 2007; Tuberculosis vaccines – an update. Nat Rev Microbiol5:484–487
    [Google Scholar]
  2. Atlung T., Ingmer H.. 1997; H-NS: a modulator of environmentally regulated gene expression. Mol Microbiol24:7–17
    [Google Scholar]
  3. Bailly C., Waring M. J., Travers A. A.. 1995; Effects of base substitutions on the binding of a DNA-bending protein. J Mol Biol253:1–7
    [Google Scholar]
  4. Beloin C., Dorman C. J.. 2003; An extended role for the nucleoid structuring protein H-NS in the virulence gene regulatory cascade of Shigella flexneri. Mol Microbiol47:825–838
    [Google Scholar]
  5. Berlutti F., Casalino M., Zagaglia C., Fradiani P. A., Visca P., Nicoletti M.. 1998; Expression of the virulence plasmid-carried apyrase gene ( apy) of enteroinvasive Escherichia coli and Shigella flexneri is under the control of H-NS and the VirF and VirB regulatory cascade. Infect Immun66:4957–4964
    [Google Scholar]
  6. Betts J. C., Lukey P. T., Robb L. C., McAdam R. A., Duncan K.. 2002; Evaluation of a nutrient starvation model of Mycobacterium tuberculosis persistence by gene and protein expression profiling. Mol Microbiol43:717–731
    [Google Scholar]
  7. Bouffartigues E., Leh H., Anger-Leroy M., Rimsky S., Buckle M.. 2007; Rapid coupling of surface plasmon resonance (SPR and SPRi) and ProteinChip based mass spectrometry for the identification of proteins in nucleoprotein interactions. Nucleic Acids Res35:e39
    [Google Scholar]
  8. CDC 2007; Extensively drug-resistant tuberculosis – United States, 1993–2006. MMWR Morb Mortal Wkly Rep56:250–253
    [Google Scholar]
  9. Chen J. M., German G. J., Alexander D. C., Ren H., Tran T., Liu J.. 2006; Roles of Lsr2 in colony morphology and biofilm formation of Mycobacterium smegmatis. J Bacteriol188:633–641
    [Google Scholar]
  10. Chen J. M., Ren H., Shaw J. E., Wang Y. J., Li M., Leung A. S., Tran V., Berbenetz N. M., Kocíncová D.. other authors 2008; Lsr2 of Mycobacterium tuberculosis is a DNA-bridging protein. Nucleic Acids Res36:2123–2135
    [Google Scholar]
  11. Colangeli R., Helb D., Vilchèze C., Hazbón M. H., Lee C.-G., Safi H., Sayers B., Sardone I., Jones M. B.. other authors 2007; Transcriptional regulation of multi-drug tolerance and antibiotic-induced responses by the histone-like protein Lsr2 in M. tuberculosis. PLoS Pathog3:e87
    [Google Scholar]
  12. Colangeli R., Haq A., Arcus V. L., Summers E., Magliozzo R. S., McBride A., Mitra A. K., Radjainia M., Khajo A.. other authors 2009; The multifunctional histone-like protein Lsr2 protects mycobacteria against reactive oxygen intermediates. Proc Natl Acad Sci U S A106:4414–4418
    [Google Scholar]
  13. Cole S. T., Brosch R., Parkhill J., Garnier T., Churcher C., Harris D., Gordon S. V., Eiglmeier K., Gas S.. other authors 1998; Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature393:537–544
    [Google Scholar]
  14. Cole S. T., Eiglmeier K., Parkhill J., James K. D., Thomson N. R., Wheeler P. R., Honore N., Garnier T., Churcher C.. other authors 2001; Massive gene decay in the leprosy bacillus. Nature409:1007–1011
    [Google Scholar]
  15. Dame R. T.. 2005; The role of nucleoid-associated proteins in the organization and compaction of bacterial chromatin. Mol Microbiol56:858–870
    [Google Scholar]
  16. Dame R. T., Goosen N.. 2002; HU: promoting or counteracting DNA compaction?. FEBS Lett529:151–156
    [Google Scholar]
  17. Dhavan G. M., Crothers D. M., Chance M. R., Brenowitz M.. 2002; Concerted binding and bending of DNA by Escherichia coli integration host factor. J Mol Biol315:1027–1037
    [Google Scholar]
  18. Dorman C. J.. 2004; H-NS: a universal regulator for a dynamic genome. Nat Rev Microbiol2:391–400
    [Google Scholar]
  19. Dorman C. J.. 2007; H-NS, the genome sentinel. Nat Rev Microbiol5:157–161
    [Google Scholar]
  20. Dorman S. E., Chaisson R. E.. 2007; From magic bullets back to the magic mountain: the rise of extensively drug-resistant tuberculosis. Nat Med13:295–298
    [Google Scholar]
  21. Dorman C. J., Deighan P.. 2003; Regulation of gene expression by histone-like proteins in bacteria. Curr Opin Genet Dev13:179–184
    [Google Scholar]
  22. Falconi M., Prosseda G., Giangrossi M., Beghetto E., Colonna B.. 2001; Involvement of Fis in the H-NS-mediated regulation of virF gene of Shigella and enteroinvasive Escherichia coli. Mol Microbiol42:439–452
    [Google Scholar]
  23. Franzon J. H., Santos D. S.. 2004; A role for histone-like protein H1 (H-NS) in the regulation of hemolysin expression by Serratia marcescens. Braz J Med Biol Res37:1763–1769
    [Google Scholar]
  24. Gandotra S., Schnappinger D., Monteleone M., Hillen W., Ehrt S.. 2007; In vivo gene silencing identifies the Mycobacterium tuberculosis proteasome as essential for the bacteria to persist in mice. Nat Med13:1515–1520
    [Google Scholar]
  25. Gomez J. E., McKinney J. D.. 2004; M. tuberculosis persistence, latency, and drug tolerance. Tuberculosis (Edinb ) 84:29–44
    [Google Scholar]
  26. Goransson M., Sonden B., Nilsson P., Dagberg B., Forsman K., Emanuelsson K., Uhlin B. E.. 1990; Transcriptional silencing and thermoregulation of gene expression in Escherichia coli. Nature344:682–685
    [Google Scholar]
  27. Gordon B. R. G., Imperial R., Wang L., Navarre W. W., Liu J.. 2008; Lsr2 of Mycobacterium represents a novel class of H-NS-like proteins. J Bacteriol190:7052–7059
    [Google Scholar]
  28. Grossman T. H., Kawasaki E. S., Punreddy S. R., Osburne M. S.. 1998; Spontaneous cAMP-dependent derepression of gene expression in stationary phase plays a role in recombinant expression instability. Gene209:95–103
    [Google Scholar]
  29. Harrison J. A., Pickard D., Higgins C. F., Khan A., Chatfield S. N., Ali T., Dorman C. J., Hormaeche C. E., Dougan G.. 1994; Role of hns in the virulence phenotype of pathogenic salmonellae. Mol Microbiol13:133–140
    [Google Scholar]
  30. Higgins C. F., Cairney J., Stirling D. A., Sutherland L., Booth I. R.. 1987; Osmotic regulation of gene expression: ionic strength as an intracellular signal?. Trends Biochem Sci12:339–344
    [Google Scholar]
  31. Hingley-Wilson S. M., Sambandamurthy V. K., Jacobs W. R. Jr. 2003; Survival perspectives from the world's most successful pathogen, Mycobacterium tuberculosis. Nat Immunol4:949–955
    [Google Scholar]
  32. Hommais F., Krin E., Laurent-Winter C., Soutourina O., Malpertuy A., Le Caer J. P., Danchin A., Bertin P.. 2001; Large-scale monitoring of pleiotropic regulation of gene expression by the prokaryotic nucleoid-associated protein, H-NS. Mol Microbiol40:20–36
    [Google Scholar]
  33. Johansson J., Dagberg B., Richet E., Uhlin B. E.. 1998; H-NS and StpA proteins stimulate expression of the maltose regulon in Escherichia coli. J Bacteriol180:6117–6125
    [Google Scholar]
  34. Kasinsky H. E., Lewis J. D., Dacks J. B., Ausió J.. 2001; Origin of H1 linker histones. FASEB J15:34–42
    [Google Scholar]
  35. Koh J., Saecker R. M., Record M. T. Jr. 2008; DNA binding mode transitions of Escherichia coli HU αβ : evidence for formation of a bent DNA–protein complex on intact, linear duplex DNA. J Mol Biol383:324–346
    [Google Scholar]
  36. Koo H. S., Wu H. M., Crothers D. M.. 1986; DNA bending at adenine.thymine tracts. Nature320:501–506
    [Google Scholar]
  37. Krylov A. S., Zasedateleva O. A., Prokopenko D. V., Rouviere-Yaniv J., Mirzabekov A. D.. 2001; Massive parallel analysis of the binding specificity of histone-like protein HU to single- and double-stranded DNA with generic oligodeoxyribonucleotide microchips. Nucleic Acids Res29:2654–2660
    [Google Scholar]
  38. Lee B. H., Murugasu-Oei B., Dick T.. 1998; Upregulation of a histone-like protein in dormant Mycobacterium smegmatis. Mol Gen Genet260:475–479
    [Google Scholar]
  39. Lewin A., Baus D., Kamal E., Bon F., Kunisch R., Maurischat S., Adonopoulou M., Eich K.. 2008; The mycobacterial DNA-binding protein 1 (MDP1) from Mycobacterium bovis BCG influences various growth characteristics. BMC Microbiol8:91
    [Google Scholar]
  40. Lucht J. M., Dersch P., Kempf B., Bremer E.. 1994; Interactions of the nucleoid-associated DNA-binding protein H-NS with the regulatory region of the osmotically controlled proU operon of Escherichia coli. J Biol Chem269:6578–6586
    [Google Scholar]
  41. Luijsterburg M. S., Noom M. C., Wuite G. J. L., Dame R. T.. 2006; The architectural role of nucleoid-associated proteins in the organization of bacterial chromatin: a molecular perspective. J Struct Biol156:262–272
    [Google Scholar]
  42. Luijsterburg M. S., White M. F., van Driel R., Dame R. T.. 2008; The major architects of chromatin: architectural proteins in bacteria, archaea and eukaryotes. Crit Rev Biochem Mol Biol43:393–418
    [Google Scholar]
  43. Magalhães M. L. B., Pereira C. P., Basso L. A., Santos D. S.. 2002; Cloning and expression of functional shikimate dehydrogenase (EC 1.1.1.25) from Mycobacterium tuberculosis H37Rv. Protein Expr Purif26:59–64
    [Google Scholar]
  44. Majka J., Speck C.. 2007; Analysis of protein–DNA interactions using surface plasmon resonance. Adv Biochem Eng Biotechnol104:13–36
    [Google Scholar]
  45. Mangan M. W., Lucchini S., Danino V., Cróinín T. O., Hinton J. C. D., Dorman C. J.. 2006; The integration host factor (IHF) integrates stationary-phase and virulence gene expression in Salmonella enterica serovar Typhimurium. Mol Microbiol59:1831–1847
    [Google Scholar]
  46. Mendonça J. D., Ely F., Palma M. S., Frazzon J., Basso L. A., Santos D. S.. 2007; Functional characterization by genetic complementation of aroB-encoded dehydroquinate synthase from Mycobacterium tuberculosis H37Rv and its heterologous expression and purification. J Bacteriol189:6246–6252
    [Google Scholar]
  47. Miller J. H.. 1992; A Short Course in Bacterial Genetics: a Laboratory Manual and Handbook for Escherichia coli and Related Bacteria Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  48. Mukherjee A., Bhattacharyya G., Grove A.. 2008; The C-terminal domain of HU-related histone-like protein Hlp from Mycobacterium smegmatis mediates DNA end-joining. Biochemistry47:8744–8753
    [Google Scholar]
  49. Nye M. B., Pfau J. D., Skorupski K., Taylor R. K.. 2000; Vibrio cholerae H-NS silences virulence gene expression at multiple steps in the ToxR regulatory cascade. J Bacteriol182:4295–4303
    [Google Scholar]
  50. Oliveira J. S., Pereira J. H., Canduri F., Rodrigues N. C., de Souza O. N., de Azevedo W. F. Jr, Basso L. A., Santos D. S.. 2006; Crystallographic and pre-steady-state kinetics studies on binding of NADH to wild-type and isoniazid-resistant enoyl-ACP(CoA) reductase enzymes from Mycobacterium tuberculosis. J Mol Biol359:646–666
    [Google Scholar]
  51. Owen-Hughes T. A., Pavitt G. D., Santos D. S., Sidebotham J. M., Hulton C. S. J., Hinton J. C. D., Higgins C. F.. 1992; The chromatin-associated protein H-NS interacts with curved DNA and influences DNA topology and gene expression. Cell71:255–265
    [Google Scholar]
  52. Pérez-Martín J., Rojo F., de Lorenzo V.. 1994; Promoters responsive to DNA bending: a common theme in prokaryotic gene expression. Microbiol Rev58:268–290
    [Google Scholar]
  53. Pomp D., Medrano J. F.. 1991; Organic solvents as facilitators of polymerase chain reaction. Biotechniques10:58–59
    [Google Scholar]
  54. Prabhakar S., Annapurna P. S., Jain N. K., Dey A. B., Tyagi J. S., Prasad H. K.. 1998; Identification of an immunogenic histone-like protein (HLPMt) of Mycobacterium tuberculosis. Tuber Lung Dis79:43–53
    [Google Scholar]
  55. Raviglione M. C.. 2003; The TB epidemic from 1992 to 2002. Tuberculosis (Edinb ) 83:4–14
    [Google Scholar]
  56. Rimsky S., Zuber F., Buckle M., Buc H.. 2001; A molecular mechanism for the repression of transcription by the H-NS protein. Mol Microbiol42:1311–1323
    [Google Scholar]
  57. Rizzi C., Frazzon J., Ely F., Weber P. G., Fonseca I. O., Gallas M., Oliveira J. S., Mendes M., Souza B. M.. other authors 2005; DAHP synthase from Mycobacterium tuberculosis H37Rv: cloning, expression, and purification of functional enzyme. Protein Expr Purif40:23–30
    [Google Scholar]
  58. Rodríguez S., Nieto J. M., Madrid C., Juárez A.. 2005; Functional replacement of the oligomerization domain of H-NS by the Hha protein of Escherichia coli. J Bacteriol187:5452–5459
    [Google Scholar]
  59. Saunders B. M., Britton W. J.. 2007; Life and death in the granuloma: immunopathology of tuberculosis. Immunol Cell Biol85:103–111
    [Google Scholar]
  60. Schechter L. M., Jain S., Akbar S., Lee C. A.. 2003; The small nucleoid-binding proteins H-NS, HU, and Fis affect hilA expression in Salmonella enterica serovar Typhimurium. Infect Immun71:5432–5435
    [Google Scholar]
  61. Schnappinger D., Schoolnik G. K., Ehrt S.. 2006; Expression profiling of host pathogen interactions: how Mycobacterium tuberculosis and the macrophage adapt to one another. Microbes Infect8:1132–1140
    [Google Scholar]
  62. Schneider R., Lurz R., Luder G., Tolksdorf C., Travers A., Muskhelishvili G.. 2001; An architectural role of the Escherichia coli chromatin protein FIS in organising DNA. Nucleic Acids Res29:5107–5114
    [Google Scholar]
  63. Scopes R. K.. 1994; Protein Purification: Principles and Practice New York: Springer;
    [Google Scholar]
  64. Shimizu M., Miyake M., Kanke F., Matsumoto U., Shindo H.. 1995; Characterization of the binding of HU and IHF, homologous histone-like proteins of Escherichia coli, to curved and uncurved DNA. Biochim Biophys Acta1264:330–336
    [Google Scholar]
  65. Shires K., Steyn L.. 2001; The cold-shock stress response in Mycobacterium smegmatis induces the expression of a histone-like protein. Mol Microbiol39:994–1009
    [Google Scholar]
  66. Silva R. G., Carvalho L. P. S., Oliveira J. S., Pinto C. A., Mendes M. A., Palma M. S., Basso L. A., Santos D. S.. 2003; Cloning, expression and purification of functional human purine nucleoside phosphorylase. Protein Expr Purif27:158–164
    [Google Scholar]
  67. Spurio R., Falconi M., Brandi A., Pon C. L., Gualerzi C. O.. 1997; The oligomeric structure of nucleoid protein H-NS is necessary for recognition of intrinsically curved DNA and for DNA bending. EMBO J16:1795–1805
    [Google Scholar]
  68. Stewart G. R., Wernisch L., Stabler R., Mangan J. A., Hinds J., Laing K. G., Young D. B., Butcher P. D.. 2002; Dissection of the heat-shock response in Mycobacterium tuberculosis using mutants and microarrays. Microbiology148:3129–3138
    [Google Scholar]
  69. Stinear T. P., Seemann T., Harrison P. F., Jenkin G. A., Davies J. K., Johnson P. D. R., Abdellah Z., Arrowsmith C.. other authors 2008; Insights from the complete genome sequence of Mycobacterium marinum on the evolution of Mycobacterium tuberculosis. Genome Res18:729–741
    [Google Scholar]
  70. Stonehouse E., Kovacikova G., Taylor R. K., Skorupski K.. 2008; Integration host factor positively regulates virulence gene expression in Vibrio cholerae. J Bacteriol190:4736–4748
    [Google Scholar]
  71. Studier F. W.. 2005; Protein production by auto-induction in high-density shaking cultures. Protein Expr Purif41:207–234
    [Google Scholar]
  72. Swinger K. K., Rice P. A.. 2004; IHF and HU: flexible architects of bent DNA. Curr Opin Struct Biol14:28–35
    [Google Scholar]
  73. Teh H. F., Peh W. Y. X., Su X., Thomsen J. S.. 2007; Characterization of protein–DNA interactions using surface plasmon resonance spectroscopy with various assay schemes. Biochemistry46:2127–2135
    [Google Scholar]
  74. Tendeng C., Bertin P. N.. 2003; H-NS in Gram-negative bacteria: a family of multifaceted proteins. Trends Microbiol11:511–518
    [Google Scholar]
  75. Thompson J. D., Higgins D. G., Gibson T. J.. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res22:4673–4680
    [Google Scholar]
  76. Tupper A. E., Owen-Hughes T. A., Ussery D. W., Santos D. S., Ferguson D. J. P., Sidebotham J. M., Hinton J. C. D., Higgins C. F.. 1994; The chromatin-associated protein H-NS alters DNA topology in vitro. EMBO J13:258–268
    [Google Scholar]
  77. Ward C. M., Wardle S. J., Singh R. K., Haniford D. B.. 2007; The global regulator H-NS binds to two distinct classes of sites within the Tn10 transpososome to promote transposition. Mol Microbiol64:1000–1013
    [Google Scholar]
  78. WHO 2008; Global Tuberculosis Control: Surveillance, Planning, Financing Geneva: World Health Organization;
    [Google Scholar]
  79. WHO 2009; Global Tuberculosis Control: Epidemiology, Strategy, Financing Geneva: World Health Organization;
    [Google Scholar]
  80. Wilson R. L., Libby S. J., Freet A. M., Boddicker J. D., Fahlen T. F., Jones B. D.. 2001; Fis, a DNA nucleoid-associated protein, is involved in Salmonella typhimurium SPI-1 invasion gene expression. Mol Microbiol39:79–88
    [Google Scholar]
  81. Yamada H., Yoshida T., Tanaka K., Sasakawa C., Mizuno T.. 1991; Molecular analysis of the Escherichia coli hns gene encoding a DNA-binding protein, which preferentially recognizes curved DNA sequences. Mol Gen Genet230:332–336
    [Google Scholar]
  82. Zhang J., Sprung R., Pei J., Tan X., Kim S., Zhu H., Liu C. F., Grishin N. V., Zhao Y.. 2009; Lysine acetylation is a highly abundant and evolutionarily conserved modification in Escherichia coli. Mol Cell Proteomics8:215–225
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.030148-0
Loading
/content/journal/micro/10.1099/mic.0.030148-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error