1887

Abstract

Various nitrate-reducing bacteria produce proteins of the periplasmic nitrate reductase (Nap) system to catalyse electron transport from the membraneous quinol pool to the periplasmic nitrate reductase NapA. The composition of the corresponding gene clusters varies but, in addition to , genes encoding at least one membrane-bound quinol dehydrogenase module (NapC and/or NapGH) are regularly present. Moreover, some loci predict accessory proteins such as the iron–sulfur protein NapF, whose function is poorly understood. Here, the role of NapF in nitrate respiration of the Epsilonproteobacterium was examined. Immunoblot analysis showed that NapF is located in the membrane fraction in nitrate-grown wild-type cells whereas it was found to be a soluble cytoplasmic protein in a deletion mutant. This finding indicates the formation of a membrane-bound NapGHF complex that is likely to catalyse NapH-dependent menaquinol oxidation and electron transport to the iron–sulfur adaptor proteins NapG and NapF, which are located on the periplasmic and cytoplasmic side of the membrane, respectively. The cysteine residues of a CXCP motif and of the C-terminal tetra-cysteine cluster of NapH were found to be required for interaction with NapF. A deletion mutant accumulated the catalytically inactive cytoplasmic NapA precursor, suggesting that electron flow or direct interaction between NapF and NapA facilitated NapA assembly and/or export. On the other hand, NapA maturation and activity was not impaired in the absence of NapH, demonstrating that soluble NapF is functional. Each of the four tetra-cysteine motifs of NapF was modified but only one motif was found to be essential for efficient NapA maturation. It is concluded that the NapGHF complex plays a multifunctional role in menaquinol oxidation, electron transfer to periplasmic NapA and maturation of the cytoplasmic NapA precursor.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.029983-0
2009-08-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/8/2784.html?itemId=/content/journal/micro/10.1099/mic.0.029983-0&mimeType=html&fmt=ahah

References

  1. Berks B. C., Richardson D. J., Robinson C., Reilly A., Aplin R. T., Ferguson S. J. 1994; Purification and characterization of the periplasmic nitrate reductase from Thiosphaera pantotropha . Eur J Biochem 220:117–124
    [Google Scholar]
  2. Bode C., Goebell H., Stähler E. 1968; Zur Eliminierung von Trübungsfehlern bei der Eiweißbestimmung mit der Biuretmethode. Z Klin Chem Klin Biochem 6:418–422
    [Google Scholar]
  3. Bokranz M., Katz J., Schröder I., Roberton A. M., Kröger A. 1983; Energy metabolism and biosynthesis of Vibrio succinogenes growing with nitrate or nitrite as terminal electron acceptor. Arch Microbiol 135:36–41
    [Google Scholar]
  4. Brondijk T. H. C., Fiegen D., Richardson D. J., Cole J. A. 2002; Roles of NapF, NapG and NapH, subunits of the Escherichia coli periplasmic nitrate reductase, in ubiquinol oxidation. Mol Microbiol 44:245–255
    [Google Scholar]
  5. Brondijk T. H. C., Nilavongse A., Filenko N., Richardson D. J., Cole J. A. 2004; NapGH components of the periplasmic nitrate reductase of Escherichia coli K-12: location, topology and physiological roles in quinol oxidation and redox balancing. Biochem J 379:47–55
    [Google Scholar]
  6. González P. J., Correia C., Moura I., Brondino C. D., Moura J. J. G. 2006; Bacterial nitrate reductases: molecular and biological aspects of nitrate reduction. J Inorg Biochem 100:1015–1023
    [Google Scholar]
  7. Gross R., Eichler R., Simon J. 2005; Site-directed modifications indicate differences in axial haem c iron ligation between the related NrfH and NapC families of multihaem c-type cytochromes. Biochem J 390:689–693
    [Google Scholar]
  8. Hartley A. M., Asai R. J. 1963; Spectrophotometric determination of nitrate with 2,6-xylenol reagent. Anal Chem 35:1207–1213
    [Google Scholar]
  9. Jepson B. J. N., Marietou A., Mohan S., Cole J. A., Butler C. S., Richardson D. J. 2006; Evolution of the soluble nitrate reductase: defining the monomeric periplasmic nitrate reductase subgroup. Biochem Soc Trans 34:122–126
    [Google Scholar]
  10. Kern M., Simon J. 2008; Characterization of the NapGH quinol dehydrogenase complex involved in Wolinella succinogenes nitrate respiration. Mol Microbiol 69:1137–1152
    [Google Scholar]
  11. Kern M., Simon J. 2009; Electron transport chains and bioenergetics of respiratory nitrogen metabolism in Wolinella succinogenes and other Epsilonproteobacteria. Biochim Biophys Acta 1787646–656
    [Google Scholar]
  12. Kern M., Mager A. M., Simon J. 2007; Role of individual nap gene cluster products in NapC-independent nitrate respiration of Wolinella succinogenes . Microbiology 153:3739–3747
    [Google Scholar]
  13. Kröger A., Geisler V., Duchêne A. 1994; Isolation of Wolinella succinogenes hydrogenase, chromatofocusing. In A Practical Guide to Membrane Protein Purification pp 141–147 Edited by von Jagow G., Schägger H. London: Academic Press;
    [Google Scholar]
  14. Maillard J., Spronck C. A., Buchanan G., Lyall V., Richardson D. J., Palmer T., Vuister G. W., Sargent F. 2007; Structural diversity in twin-arginine signalpeptide-binding proteins. Proc Natl Acad Sci U S A 104:15641–15646
    [Google Scholar]
  15. Marietou A., Richardson D., Cole J., Mohan S. 2005; Nitrate reduction by Desulfovibrio desulfuricans: a periplasmic nitrate reductase system that lacks NapB, but includes a unique tetraheme c-type cytochrome, NapM. FEMS Microbiol Lett 248:217–225
    [Google Scholar]
  16. Nilavongse A., Brondijk T. H. C., Overton T. W., Richardson D. J., Leach E. R., Cole J. A. 2006; The NapF protein of the Escherichia coli periplasmic nitrate reductase system: demonstration of a cytoplasmic location and interaction with the catalytic subunit. NapA. Microbiology 152:3227–3237
    [Google Scholar]
  17. Olmo-Mira M. F., Cabello P., Pino C., Martinez-Luque M., Richardson D. J., Castillo F., Roldan M. D., Moreno-Vivian C. 2006; Expression and characterization of the assimilatory NADH-nitrite reductase from the phototrophic bacterium Rhodobacter capsulatus E1F1. Arch Microbiol 186:339–344
    [Google Scholar]
  18. Pfennig N., Trüper H. G. 1981; Isolation of members of the families Chromatiaceae and Chlorobiaceae. In The Prokaryotes pp 279–289 Edited by Starr M. P., Stolp H., Trüper H. G., Balows A., Schlegel H. G. New York, Berlin, Heidelberg: Springer;
    [Google Scholar]
  19. Pittman M. S., Elvers K. T., Lee L., Jones M. A., Poole R. K., Park S. F., Kelly D. J. 2007; Growth of Campylobacter jejuni on nitrate and nitrite: electron transport to NapA and NrfA via NrfH and distinct roles for NrfA and the globin Cgb in protection against nitrosative stress. Mol Microbiol 63:575–590
    [Google Scholar]
  20. Potter L., Angove H., Richardson D., Cole J. 2001; Nitrate reduction in the periplasm of gram-negative bacteria. Adv Microb Physiol 45:51–112
    [Google Scholar]
  21. Reyes F., Gavira M., Castillo F., Moreno-Vivián C. 1998; Periplasmic nitrate-reducing system of the phototrophic bacterium Rhodobacter sphaeroides DSM 158: transcriptional and mutational analysis of the napKEFDABC gene cluster. Biochem J 331:897–904
    [Google Scholar]
  22. Richardson D. J. 2000; Bacterial respiration: a flexible process for a changing environment. Microbiology 146:551–571
    [Google Scholar]
  23. Richardson D. J., Berks B. C., Russell D. A., Spiro S., Taylor C. J. 2001; Functional, biochemical and genetic diversity of prokaryotic nitrate reductases. Cell Mol Life Sci 58:165–178
    [Google Scholar]
  24. Rider B. F., Mellon M. G. 1946; Colorimetric determination of nitrite. Ind Eng Chem 18:96–99
    [Google Scholar]
  25. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual , 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  26. Simon J. 2002; Enzymology and bioenergetics of respiratory nitrite ammonification. FEMS Microbiol Rev 26:285–309
    [Google Scholar]
  27. Simon J., Kern M. 2008; Quinone-reactive proteins devoid of haem b form widespread membrane-bound electron transport modules in bacterial anaerobic respiration. Biochem Soc Trans 36:1011–1016
    [Google Scholar]
  28. Simon J., Gross R., Ringel M., Schmidt E., Kröger A. 1998; Deletion and site-directed mutagenesis of the Wolinella succinogenes fumarate reductase operon. Eur J Biochem 251:418–426
    [Google Scholar]
  29. Simon J., Gross R., Einsle O., Kroneck P. M. H., Kröger A., Klimmek O. 2000; A NapC/NirT-type cytochrome c (NrfH) is the mediator between the quinone pool and the cytochrome c nitrite reductase of Wolinella succinogenes . Mol Microbiol 35:686–696
    [Google Scholar]
  30. Simon J., Pisa R., Stein T., Eichler R., Klimmek O., Gross R. 2001; The tetraheme cytochrome c NrfH is required to anchor the cytochrome c nitrite reductase (NrfA) in the membrane of Wolinella succinogenes . Eur J Biochem 268:5776–5782
    [Google Scholar]
  31. Simon J., Sänger M., Schuster S. C., Gross R. 2003; Electron transport to periplasmic nitrate reductase (NapA) of Wolinella succinogenes is independent of a NapC protein. Mol Microbiol 49:69–79
    [Google Scholar]
  32. Simon J., Einsle O., Kroneck P. M. H., Zumft W. G. 2004; The unprecedented nos gene cluster of Wolinella succinogenes encodes a novel respiratory electron transfer pathway to cytochrome c nitrous oxide reductase. FEBS Lett 569:7–12
    [Google Scholar]
  33. Simon J., van Spanning R. J. M., Richardson D. J. 2008; The organisation of proton motive and non-proton motive redox loops in prokaryotic respiratory systems. Biochim Biophys Acta 17771480–1490
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.029983-0
Loading
/content/journal/micro/10.1099/mic.0.029983-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error