1887

Abstract

The reduction of tetrazolium salts to coloured formazans is often used as an indicator of cell metabolism during microbiology studies, although the reduction mechanisms have never clearly been established in bacteria. The objective of the present study was to identify the reduction mechanisms of tetrazolium violet (TV) in using a mutagenesis approach, under two experimental conditions generally applied in microbiology: a plate test with growing cells, and a liquid test with non-growing (resting) cells. The results showed that in both tests, TV reduction resulted from electron transfer from an intracellular donor (mainly NADH) to TV via the electron transport chain (ETC), but the reduction sites in the ETC depended on experimental conditions. Using the plate test, menaquinones were essential for TV reduction and membrane NADH dehydrogenases (NoxA and/or NoxB) were partly involved in electron transfer to menaquinones. In this case, TV reduction mainly occurred outside the cells and in the outer part of the plasma membrane. During the liquid test, TV was directly reduced by NoxA and/or NoxB, probably in the inner part of the membrane, where NoxA and NoxB are localized. In this case, reduction was directly related to the intracellular NADH pool. Based on these findings, new applications for TV tests are proposed, such as NADH pool determination with the liquid test and the screening of mutants affected in menaquinone biosynthesis with the plate test. Preliminary results using other tetrazolium salts in the plate test showed that the reduction sites depended on the salt, suggesting that similar studies should be carried out with other tetrazolium salts so that the outcome of each test can be interpreted correctly.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.029678-0
2009-09-01
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/9/2941.html?itemId=/content/journal/micro/10.1099/mic.0.029678-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. 1990; Basic local alignment search tool. J Mol Biol 215:403–410
    [Google Scholar]
  2. Beloti V., Barros M. A. F., de Freitas J. C., Nero L. A., de Souza J. A., Santana E. H. W., Franco B. D. G. M. 1999; Frequency of 2,3,5-triphenyltetrazolium chloride (TTC) non-reducing bacteria in pasteurized milk. Rev Microbiol 30:137–140
    [Google Scholar]
  3. Bernas T., Dobrucki J. 1999; Reduction of a tetrazolium salt, CTC, by intact HepG2 human hepatoma cells: subcellular localisation of reducing systems. Biochim Biophys Acta 145173–81
    [Google Scholar]
  4. Bernas T., Dobrucki J. W. 2000; The role of plasma membrane in bioreduction of two tetrazolium salts, MTT, and CTC. Arch Biochem Biophys 380:108–116
    [Google Scholar]
  5. Bernas T., Dobrucki J. 2002; Mitochondrial and nonmitochondrial reduction of MTT: interaction of MTT with TMRE, JC-1, and NAO mitochondrial fluorescent probes. Cytometry 47:236–242
    [Google Scholar]
  6. Bernas T., Dobrucki J. W. 2004; Backscattered light confocal imaging of intracellular MTT-formazan crystals. Microsc Res Tech 64:126–134
    [Google Scholar]
  7. Berridge M. V., Tan A. S. 1993; Characterization of the cellular reduction of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT): subcellular localization, substrate dependence, and involvement of mitochondrial electron transport in MTT reduction. Arch Biochem Biophys 303:474–482
    [Google Scholar]
  8. Berridge M. V., Herst P. M., Tan A. S. 2005; Tetrazolium dyes as tools in cell biology: new insights into their cellular reduction. In Biotechnology Annual Review pp 127–152 Edited by El-Gewely M. R. Amsterdam: Elsevier;
    [Google Scholar]
  9. Bhupathiraju V. K., Hernandez M., Landfear D., Alvarez-Cohen L. 1999; Application of a tetrazolium dye as an indicator of viability in anaerobic bacteria. J Microbiol Methods 37:231–243
    [Google Scholar]
  10. Bochner B. R. 1989; Sleuthing out bacterial identities. Nature 339:157–158
    [Google Scholar]
  11. Bochner B. R., Savageau M. A. 1977; Generalized indicator plate for genetic, metabolic, and taxonomic studies with microorganisms. Appl Environ Microbiol 33:434–444
    [Google Scholar]
  12. Bochner B. R., Gadzinski P., Panomitros E. 2001; Phenotype microarrays for high-throughput phenotypic testing and assay of gene function. Genome Res 11:1246–1255
    [Google Scholar]
  13. Bochner B. R., Giovannetti L., Viti C. 2008; Important discoveries from analysing bacterial phenotypes. Mol Microbiol 70:274–280
    [Google Scholar]
  14. Bolotin A., Wincker P., Mauger S., Jaillon O., Malarme K., Weissenbach J., Ehrlich S. D., Sorokin A. 2001; The complete genome sequence of the lactic acid bacterium Lactococcus lactis ssp. lactis IL1403. Genome Res 11:731–753
    [Google Scholar]
  15. Brasca M., Morandi S., Lodi R., Tamburini A. 2007; Redox potential to discriminate among species of lactic acid bacteria. J Appl Microbiol 103:1516–1524
    [Google Scholar]
  16. Brooijmans R. J., Poolman B., Schuurman-Wolters G. K., de Vos W. M., Hugenholtz J. 2007; Generation of a membrane potential by Lactococcus lactis through aerobic electron transport. J Bacteriol 189:5203–5209
    [Google Scholar]
  17. Chambellon E., Rijnen L., Lorquet F., Gitton C., van Hylckama Vlieg J. E., Wouters J. A., Yvon M. 2009; The d-2-hydroxyacid dehydrogenase incorrectly annotated PanE is the sole reduction system for branched-chain 2-keto acids in Lactococcus lactis . J Bacteriol 191:873–881
    [Google Scholar]
  18. Ganzera M., Vrabl P., Worle E., Burgstaller W., Stuppner H. 2006; Determination of adenine and pyridine nucleotides in glucose-limited chemostat cultures of Penicillium simplicissimum by one-step ethanol extraction and ion-pairing liquid chromatography. Anal Biochem 359:132–140
    [Google Scholar]
  19. Garrigues C., Loubière P., Lindley N. D., Cocaign-Bousquet M. 1997; Control of the shift from homolactic acid to mixed-acid fermentation in Lactococcus lactis: predominant role of the NADH/NAD+ ratio. J Bacteriol 179:5282–5287
    [Google Scholar]
  20. Gaudu P., Vido K., Cesselin B., Kulakauskas S., Tremblay J., Rezaiki L., Lamberret G., Sourice S., Duwat P., Gruss A. 2002; Respiration capacity and consequences in Lactococcus lactis . Antonie Van Leeuwenhoek 82:263–269
    [Google Scholar]
  21. Griebe T., Schaule G., Wuertz S. 1997; Determination of microbial respiratory and redox activity in activated sludge. J Ind Microbiol Biotechnol 19:118–122
    [Google Scholar]
  22. Hayashi S., Kobayashi T., Honda H. 2003; Simple and rapid cell growth assay using tetrazolium violet coloring method for screening of organic solvent tolerant bacteria. J Biosci Bioeng 96:360–363
    [Google Scholar]
  23. Herst P. M., Perrone G. G., Dawes I. W., Bircham P. W., Berridge M. V. 2008; Plasma membrane electron transport in Saccharomyces cerevisiae depends on the presence of mitochondrial respiratory subunits. FEMS Yeast Res 8:897–905
    [Google Scholar]
  24. Holo H., Nes I. F. 1989; High-frequency transformation, by electroporation, of Lactococcus lactis subsp. cremoris grown with glycine in osmotically stabilized media. Appl Environ Microbiol 55:3119–3123
    [Google Scholar]
  25. Lebloas P., Guilbert N., Loubière P., Lindley N. D. 1993; Growth inhibition and pyruvate overflow during glucose metabolism of Eubacterium limosum are related to a limited capacity to reassimilate CO2 by the acetyl-CoA pathway. J Gen Microbiol 139:1861–1868
    [Google Scholar]
  26. Lin Y. C., Agbanyim C. N., Miles R. J., Nicholas R. A., Kelly D. P., Wood A. P. 2008; Tetrazolium reduction methods for assessment of substrate oxidation and strain differentiation among mycoplasmas, with particular reference to Mycoplasma bovigenitalium and some members of the Mycoplasma mycoides cluster. J Appl Microbiol 105:492–501
    [Google Scholar]
  27. Maguin E., Duwat P., Hege T., Ehrlich D., Gruss A. 1992; New thermosensitive plasmid for gram-positive bacteria. J Bacteriol 174:5633–5638
    [Google Scholar]
  28. Maguin E., Prevost H., Ehrlich S. D., Gruss A. 1996; Efficient insertional mutagenesis in lactococci and other gram-positive bacteria. J Bacteriol 178:931–935
    [Google Scholar]
  29. Melo A. M., Bandeiras T. M., Teixeira M. 2004; New insights into type II NAD(P)H : quinone oxidoreductases. Microbiol Mol Biol Rev 68:603–616
    [Google Scholar]
  30. Miller R. J., Davey C. B. 1965; Influence of the microphysical structure of a system on the growth of bacteria. Can J Microbiol 11:761–763
    [Google Scholar]
  31. Morishita T., Tamura N., Makino T., Kudo S. 1999; Production of menaquinones by lactic acid bacteria. J Dairy Sci 82:1897–1903
    [Google Scholar]
  32. O'Sullivan D. J., Klaenhammer T. R. 1993; Rapid mini-prep isolation of high-quality plasmid DNA from Lactococcus and Lactobacillus spp. Appl Environ Microbiol 59:2730–2733
    [Google Scholar]
  33. Raut U., Narang P., Mendiratta D., Narang R., Deotale V. 2008; Evaluation of rapid MTT tube method for detection of drug susceptibility of Mycobacterium tuberculosis to rifampicin and isoniazid. Indian J Med Microbiol 26:222–227
    [Google Scholar]
  34. Rezaiki L., Lamberet G., Derre A., Gruss A., Gaudu P. 2008; Lactococcus lactis produces short-chain quinones that cross-feed Group B Streptococcus to activate respiration growth. Mol Microbiol 67:947–957
    [Google Scholar]
  35. Rodriguez G. G., Phipps D., Ishiguro K., Ridgway H. F. 1992; Use of a fluorescent redox probe for direct visualization of actively respiring bacteria. Appl Environ Microbiol 58:1801–1808
    [Google Scholar]
  36. Sambrook J., Russell D. W. 2001 Molecular Cloning: a Laboratory Manual , 3rd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  37. Smit B. A., van Hylckama Vlieg J. E., Engels W. J., Meijer L., Wouters J. T., Smit G. 2005; Identification, cloning, and characterization of a Lactococcus lactis branched-chain alpha-keto acid decarboxylase involved in flavor formation. Appl Environ Microbiol 71:303–311
    [Google Scholar]
  38. Smith J. J., McFeters G. A. 1997; Mechanisms of INT (2-(4-iodophenyl)-3-(4-nitrophenyl)-5-phenyl tetrazolium chloride), and CTC (5-cyano-2,3-ditolyl tetrazolium chloride) reduction in Escherichia coli K-12. J Microbiol Methods 29:161–175
    [Google Scholar]
  39. Sollod C. C., Jenns A. E., Daub M. E. 1992; Cell surface redox potential as a mechanism of defense against photosensitizers in fungi. Appl Environ Microbiol 58:444–449
    [Google Scholar]
  40. Tsukatani T., Suenaga H., Higuchi T., Akao T., Ishiyama M., Ezoe K., Matsumoto K. 2008; Colorimetric cell proliferation assay for microorganisms in microtiter plate using water-soluble tetrazolium salts. J Microbiol Methods 75:109–116
    [Google Scholar]
  41. Tunney M. M., Ramage G., Field T. R., Moriarty T. F., Storey D. G. 2004; Rapid colorimetric assay for antimicrobial susceptibility testing of Pseudomonas aeruginosa . Antimicrob Agents Chemother 48:1879–1881
    [Google Scholar]
  42. Turner N., Sandine W. E., Elliker P. R., Day E. A. 1963; Use of tetrazolium dyes in an agar medium for differentiation of Streptococcus lactis and Streptococcus cremoris . J Dairy Sci 46:380–385
    [Google Scholar]
  43. Wegmann U., O'Connell-Motherway M., Zomer A., Buist G., Shearman C., Canchaya C., Ventura M., Goesmann A., Gasson M. J. other authors 2007; Complete genome sequence of the prototype lactic acid bacterium Lactococcus lactis subsp. cremoris MG1363. J Bacteriol 189:3256–3270
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.029678-0
Loading
/content/journal/micro/10.1099/mic.0.029678-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error