1887

Abstract

Many bacteria are motile by means of flagella, semi-rigid helical filaments rotated at the filament's base and energized by proton or sodium-ion gradients. Torque is created between the two major components of the flagellar motor: the rotating switch complex and the cell-wall-associated stators, which are arranged in a dynamic ring-like structure. Being motile provides a survival advantage to many bacteria, and thus the flagellar motor should work optimally under a wide range of environmental conditions. Recent studies have demonstrated that numerous species possess a single flagellar system but have two or more individual stator systems that contribute differentially to flagellar rotation. This review describes recent findings on rotor–stator interactions, on the role of different stators, and on how stator selection could be regulated. An emerging model suggests that bacterial flagellar motors are dynamic and can be tuned by stator swapping in response to different environmental conditions.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.029595-0
2010-05-01
2020-09-23
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/5/1275.html?itemId=/content/journal/micro/10.1099/mic.0.029595-0&mimeType=html&fmt=ahah

References

  1. Armitage J. P.. 1999; Bacterial tactic responses. Adv Microb Physiol41:229–289
    [Google Scholar]
  2. Asai Y., Yakushi T., Kawagishi I., Homma M.. 2003; Ion-coupling determinants of Na+-driven and H+-driven flagellar motors. J Mol Biol327:453–463
    [Google Scholar]
  3. Berg H. C.. 2003; The rotary motor of bacterial flagella. Annu Rev Biochem72:19–54
    [Google Scholar]
  4. Blair D. F., Berg H. C.. 1988; Restoration of torque in defective flagellar motors. Science242:1678–1681
    [Google Scholar]
  5. Block S. M., Berg H. C.. 1984; Successive incorporation of force-generating units in the bacterial rotary motor. Nature309:470–472
    [Google Scholar]
  6. Braun T. F., Al-Mawsawi L. Q., Kojima S., Blair D. F.. 2004; Arrangement of core membrane segments in the MotA/MotB proton-channel complex of Escherichia coli. Biochemistry43:35–45
    [Google Scholar]
  7. Coulton J. W., Murray R. G.. 1978; Cell envelope associations of Aquaspirillum serpens flagella. J Bacteriol136:1037–1049
    [Google Scholar]
  8. Dobell C.. 1960; Antony van Leeuwenhoek and His “Little Animals” New York: Dover;
  9. Doyle T. B., Hawkins A. C., McCarter L. L.. 2004; The complex flagellar torque generator of Pseudomonas aeruginosa. J Bacteriol186:6341–6350
    [Google Scholar]
  10. Fukuoka H., Yakushi T., Kusumoto A., Homma M.. 2005; Assembly of motor proteins, PomA and PomB, in the Na+-driven stator of the flagellar motor. J Mol Biol351:707–717
    [Google Scholar]
  11. Fukuoka H., Wada T., Kojima S., Ishijima A., Homma M.. 2009; Sodium-dependent dynamic assembly of membrane complexes in sodium-driven flagellar motors. Mol Microbiol71:825–835
    [Google Scholar]
  12. Gosink K. K., Häse C. C.. 2000; Requirements for conversion of the Na+-driven flagellar motor of Vibrio cholerae to the H+-driven motor of Escherichia coli. J Bacteriol182:4234–4240
    [Google Scholar]
  13. Hosking E. R., Manson M. D.. 2008; Clusters of charged residues at the C terminus of MotA and N terminus of MotB are important for function of the Escherichia coli flagellar motor. J Bacteriol190:5517–5521
    [Google Scholar]
  14. Ito M., Hicks D. B., Henkin T. M., Guffanti A. A., Powers B. D., Zvi L., Uematsu K., Krulwich T. A.. 2004; MotPS is the stator-force generator for motility of alkaliphilic Bacillus, and its homologue is a second functional Mot in Bacillus subtilis. Mol Microbiol53:1035–1049
    [Google Scholar]
  15. Ito M., Terahara N., Fujinami S., Krulwich T. A.. 2005; Properties of motility in Bacillus subtilis powered by the H+-coupled MotAB flagellar stator, Na+-coupled MotPS or hybrid stators MotAS or MotPB. J Mol Biol352:396–408
    [Google Scholar]
  16. Khan S., Dapice M., Reese T. S.. 1988; Effects of mot gene expression on the structure of the flagellar motor. J Mol Biol202:575–584
    [Google Scholar]
  17. Khan S., Ivey D. M., Krulwich T. A.. 1992; Membrane ultrastructure of alkaliphilic Bacillus species studied by rapid-freeze electron microscopy. J Bacteriol174:5123–5126
    [Google Scholar]
  18. Koerdt A., Paulick A., Mock M., Jost K., Thormann K. M.. 2009; MotX and MotY are required for flagellar rotation in Shewanella oneidensis MR-1. J Bacteriol191:5085–5093
    [Google Scholar]
  19. Kojima S., Blair D. F.. 2004a; The bacterial flagellar motor: structure and function of a complex molecular machine. Int Rev Cytol233:93–134
    [Google Scholar]
  20. Kojima S., Blair D. F.. 2004b; Solubilization and purification of the MotA/MotB complex of Escherichia coli. Biochemistry43:26–34
    [Google Scholar]
  21. Kojima S., Shinohara A., Terashima H., Yakushi T., Sakuma M., Homma M., Namba K., Imada K.. 2008; Insights into the stator assembly of the Vibrio flagellar motor from the crystal structure of MotY. Proc Natl Acad Sci U S A105:7696–7701
    [Google Scholar]
  22. Kojima S., Imada K., Sakuma M., Sudo Y., Kojima C., Minamino T., Homma M., Namba K.. 2009; Stator assembly and activation mechanism of the flagellar motor by the periplasmic region of MotB. Mol Microbiol73:710–718
    [Google Scholar]
  23. Leake M. C., Chandler J. H., Wadhams G. H., Bai F., Berry R. M., Armitage J. P.. 2006; Stoichiometry and turnover in single, functioning membrane protein complexes. Nature443:355–358
    [Google Scholar]
  24. Liu J., Lin T., Botkin D. J., McCrum E., Winkler H., Norris S. J.. 2009; Intact flagellar motor of Borrelia burgdorferi revealed by cryo-electron tomography: evidence for stator ring curvature and rotor/C-ring assembly flexion. J Bacteriol191:5026–5036
    [Google Scholar]
  25. Lloyd S. A., Blair D. F.. 1997; Charged residues of the rotor protein FliG essential for torque generation in the flagellar motor of Escherichia coli. J Mol Biol266:733–744
    [Google Scholar]
  26. Lloyd S. A., Tang H., Wang X., Billings S., Blair D. F.. 1996; Torque generation in the flagellar motor of Escherichia coli: evidence of a direct role for FliG but not for FliM or FliN. J Bacteriol178:223–231
    [Google Scholar]
  27. Macnab R. M.. 2003; How bacteria assemble flagella. Annu Rev Microbiol57:77–100
    [Google Scholar]
  28. Magariyama Y., Sugiyama S., Muramoto K., Maekawa Y., Kawagishi I., Imae Y., Kudo S.. 1994; Very fast flagellar rotation. Nature371:752
    [Google Scholar]
  29. McCarter L. L.. 2006; Regulation of flagella. Curr Opin Microbiol9:180–186
    [Google Scholar]
  30. McCarter L., Hilmen M., Silverman M.. 1988; Flagellar dynamometer controls swarmer cell differentiation of Vibrio parahaemolyticus. Cell54:345–351
    [Google Scholar]
  31. Merino S., Shaw J. G., Tomás J. M.. 2006; Bacterial lateral flagella: an inducible flagella system. FEMS Microbiol Lett263:127–135
    [Google Scholar]
  32. Minamino T., Imada K., Namba K.. 2008; Molecular motors of the bacterial flagella. Curr Opin Struct Biol18:693–701
    [Google Scholar]
  33. Paulick A., Koerdt A., Lassak J., Huntley S., Wilms I., Narberhaus F., Thormann K. M.. 2009; Two different stator systems drive a single polar flagellum in Shewanella oneidensis MR-1. Mol Microbiol71:836–850
    [Google Scholar]
  34. Reid S. W., Leake M. C., Chandler J. H., Lo C. J., Armitage J. P., Berry R. M.. 2006; The maximum number of torque-generating units in the flagellar motor of Escherichia coli is at least 11. Proc Natl Acad Sci U S A103:8066–8071
    [Google Scholar]
  35. Ryu W. S., Berry R. M., Berg H. C.. 2000; Torque-generating units of the flagellar motor of Escherichia coli have a high duty ratio. Nature403:444–447
    [Google Scholar]
  36. Sato K., Homma M.. 2000; Functional reconstitution of the Na+-driven polar flagellar motor component of Vibrio alginolyticus. J Biol Chem275:5718–5722
    [Google Scholar]
  37. Shimada T., Sakazaki R., Suzuki K.. 1985; Peritrichous flagella in mesophilic strains of Aeromonas. Jpn J Med Sci Biol38:141–145
    [Google Scholar]
  38. Sowa Y., Berry R. M.. 2008; Bacterial flagellar motor. Q Rev Biophys41:103–132
    [Google Scholar]
  39. Sowa Y., Rowe A. D., Leake M. C., Yakushi T., Homma M., Ishijima A., Berry R. M.. 2005; Direct observation of steps in rotation of the bacterial flagellar motor. Nature437:916–919
    [Google Scholar]
  40. Terahara N., Fujisawa M., Powers B., Henkin T. M., Krulwich T. A., Ito M.. 2006; An intergenic stem-loop mutation in the Bacillus subtilis ccpA- motPS operon increases motPS transcription and the MotPS contribution to motility. J Bacteriol188:2701–2705
    [Google Scholar]
  41. Terashima H., Fukuoka H., Yakushi T., Kojima S., Homma M.. 2006; The Vibrio motor proteins, MotX and MotY, are associated with the basal body of Na+-driven flagella and required for stator formation. Mol Microbiol62:1170–1180
    [Google Scholar]
  42. Thomas D. R., Francis N. R., Xu C., DeRosier D. J.. 2006; The three-dimensional structure of the flagellar rotor from a clockwise-locked mutant of Salmonella enterica serovar Typhimurium. J Bacteriol188:7039–7048
    [Google Scholar]
  43. Toutain C. M., Zegans M. E., O'Toole G. A.. 2005; Evidence for two flagellar stators and their role in the motility of Pseudomonas aeruginosa. J Bacteriol187:771–777
    [Google Scholar]
  44. Toutain C. M., Caizza N. C., Zegans M. E., O'Toole G. A.. 2007; Roles for flagellar stators in biofilm formation by Pseudomonas aeruginosa. Res Microbiol158:471–477
    [Google Scholar]
  45. Van Way S. M., Hosking E. R., Braun T. F., Manson M. D.. 2000; Mot protein assembly into the bacterial flagellum: a model based on mutational analysis of the motB gene. J Mol Biol297:7–24
    [Google Scholar]
  46. Wang Q., Suzuki A., Mariconda S., Porwollik S., Harshey R. M.. 2005; Sensing wetness: a new role for the bacterial flagellum. EMBO J24:2034–2042
    [Google Scholar]
  47. Wilhelms M., Vilches S., Molero R., Shaw J. G., Tomas J. M., Merino S.. 2009; Two redundant sodium-driven stator motor proteins are involved in Aeromonas hydrophila polar flagellum rotation. J Bacteriol191:2206–2217
    [Google Scholar]
  48. Yakushi T., Yang J., Fukuoka H., Homma M., Blair D. F.. 2006; Roles of charged residues of rotor and stator in flagellar rotation: comparative study using H+-driven and Na+-driven motors in Escherichia coli. J Bacteriol188:1466–1472
    [Google Scholar]
  49. Yorimitsu T., Homma M.. 2001; Na+-driven flagellar motor of Vibrio. Biochim Biophys Acta 1505;82–93
    [Google Scholar]
  50. Yorimitsu T., Sowa Y., Ishijima A., Yakushi T., Homma M.. 2002; The systematic substitutions around the conserved charged residues of the cytoplasmic loop of Na+-driven flagellar motor component PomA. J Mol Biol320:403–413
    [Google Scholar]
  51. Yorimitsu T., Mimaki A., Yakushi T., Homma M.. 2003; The conserved charged residues of the C-terminal region of FliG, a rotor component of the Na+-driven flagellar motor. J Mol Biol334:567–583
    [Google Scholar]
  52. Zhou J., Blair D. F.. 1997; Residues of the cytoplasmic domain of MotA essential for torque generation in the bacterial flagellar motor. J Mol Biol273:428–439
    [Google Scholar]
  53. Zhou J., Lloyd S. A., Blair D. F.. 1998; Electrostatic interactions between rotor and stator in the bacterial flagellar motor. Proc Natl Acad Sci U S A95:6436–6441
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.029595-0
Loading
/content/journal/micro/10.1099/mic.0.029595-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error