1887

Abstract

The enzyme phosphoglucomutase (Pgm) catalyses the interconversion of glucose 1-phosphate and glucose 6-phosphate and contributes to glycolysis and the generation of sugar nucleotides for biosynthesis. To assess the role of this enzyme in the biology of the pathogen serovar Typhimurium we have characterized a deletion mutant in strain SL1344. Compared to SL1344, SL1344 had impaired growth , was deficient in the ability to utilize galactose as a carbon source and displayed reduced O-antigen polymer length. The mutant was also more susceptible to antimicrobial peptides and showed decreased fitness in the mouse typhoid model. The phenotype of SL1344 indicated a role for in the early stages of infection, most likely through deficient O-antigen production. Although mutants in other pathogens have potential as live attenuated vaccine strains, SL1344 was not sufficiently attenuated for such use.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.029553-0
2009-10-01
2024-11-13
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/10/3403.html?itemId=/content/journal/micro/10.1099/mic.0.029553-0&mimeType=html&fmt=ahah

References

  1. Adhya S., Schwartz M. 1971; Phosphoglucomutase mutants of Escherichia coli K-12. J Bacteriol 108:621–626
    [Google Scholar]
  2. Banemann A., Deppisch H., Gross R. 1998; The lipopolysaccharide of Bordetella bronchiseptica acts as a protective shield against antimicrobial peptides. Infect Immun 66:5607–5612
    [Google Scholar]
  3. Bizzini A., Majcherczyk P., Beggah-Moller S., Soldo B., Entenza J. M., Gaillard M., Moreillon P., Lazarevic V. 2007; Effects of alpha-phosphoglucomutase deficiency on cell wall properties and fitness in Streptococcus gordonii . Microbiology 153:490–498
    [Google Scholar]
  4. Bjur E., Eriksson-Ygberg S., Rhen M. 2006; The O-antigen affects replication of Salmonella enterica serovar Typhimurium in murine macrophage-like J774-A.1 cells through modulation of host cell nitric oxide production. Microbes Infect 8:1826–1838
    [Google Scholar]
  5. Buchanan J. T., Stannard J. A., Lauth X., Ostland V. E., Powell H. C., Westerman M. E., Nizet V. 2005; Streptococcus iniae phosphoglucomutase is a virulence factor and a target for vaccine development. Infect Immun 73:6935–6944
    [Google Scholar]
  6. Bullas L. R., Ryu J. I. 1983; Salmonella typhimurium LT2 strains which are r− m+ for all three chromosomally located systems of DNA restriction and modification. J Bacteriol 156:471–474
    [Google Scholar]
  7. Canovas D., Fletcher S. A., Hayashi M., Csonka L. N. 2001; Role of trehalose in growth at high temperature of Salmonella enterica serovar typhimurium. J Bacteriol 183:3365–3371
    [Google Scholar]
  8. Crump J. A., Luby S. P., Mintz E. D. 2004; The global burden of typhoid fever. Bull World Health Organ 82:346–353
    [Google Scholar]
  9. Ernst R. K., Guina T., Miller S. I. 2001; Salmonella typhimurium outer membrane remodeling: role in resistance to host innate immunity. Microbes Infect 3:1327–1334
    [Google Scholar]
  10. Fields P. I., Groisman E. A., Heffron F. 1989; A Salmonella locus that controls resistance to microbicidal proteins from phagocytic cells. Science 243:1059–1062
    [Google Scholar]
  11. Gunn J. S. 2008; The Salmonella PmrAB regulon: lipopolysaccharide modifications, antimicrobial peptide resistance and more. Trends Microbiol 16:284–290
    [Google Scholar]
  12. Hamrick T. S., Diaz A. H., Havell E. A., Horton J. R., Orndorff P. E. 2003; Influence of extracellular bactericidal agents on bacteria within macrophages. Infect Immun 71:1016–1019
    [Google Scholar]
  13. Hardy G. G., Magee A. D., Ventura C. L., Caimano M. J., Yother J. 2001; Essential role for cellular phosphoglucomutase in virulence of type 3 Streptococcus pneumoniae . Infect Immun 69:2309–2317
    [Google Scholar]
  14. Hoiseth S. K., Stocker B. A. 1981; Aromatic-dependent Salmonella typhimurium are non-virulent and effective as live vaccines. Nature 291:238–239
    [Google Scholar]
  15. Jenssen H., Hamill P., Hancock R. E. 2006; Peptide antimicrobial agents. Clin Microbiol Rev 19:491–511
    [Google Scholar]
  16. Kim S. H., Ahn S. H., Lee J. H., Lee E. M., Kim N. H., Park K. J., Kong I. S. 2003; Genetic analysis of phosphomannomutase/phosphoglucomutase from Vibrio furnissii and characterization of its role in virulence. Arch Microbiol 180:240–250
    [Google Scholar]
  17. Lazarevic V., Soldo B., Medico N., Pooley H., Bron S., Karamata D. 2005; Bacillus subtilis alpha-phosphoglucomutase is required for normal cell morphology and biofilm formation. Appl Environ Microbiol 71:39–45
    [Google Scholar]
  18. Lu M., Kleckner N. 1994; Molecular cloning and characterization of the pgm gene encoding phosphoglucomutase of Escherichia coli . J Bacteriol 176:5847–5851
    [Google Scholar]
  19. McKay G. A., Woods D. E., MacDonald K. L., Poole K. 2003; Role of phosphoglucomutase of Stenotrophomonas maltophilia in lipopolysaccharide biosynthesis, virulence, and antibiotic resistance. Infect Immun 71:3068–3075
    [Google Scholar]
  20. Mo E., Peters S. E., Willers C., Maskell D. J., Charles I. G. 2006; Single, double and triple mutants of Salmonella enterica serovar TyphimuriumdegP ( htrA), degQ ( hhoA) and degS ( hhoB) have diverse phenotypes on exposure to elevated temperature and their growth in vivo is attenuated to different extents. Microb Pathog 41:174–182
    [Google Scholar]
  21. Paterson G. K., Cone D. B., Northen H., Peters S. E., Maskell D. J. 2009; Deletion of the gene encoding the glycolytic enzyme triosephosphate isomerase alters morphology of Salmonella enterica serovar Typhimurium and decreases fitness in mice. FEMS Microbiol Lett 294:45–51
    [Google Scholar]
  22. Plant L., Sundqvist J., Zughaier S., Lovkvist L., Stephens D. S., Jonsson A. B. 2006; Lipooligosaccharide structure contributes to multiple steps in the virulence of Neisseria meningitidis . Infect Immun 74:1360–1367
    [Google Scholar]
  23. Roantree R. J. 1967; Salmonella O antigens and virulence. Annu Rev Microbiol 21:443–466
    [Google Scholar]
  24. Schmieger H. 1972; Phage P22-mutants with increased or decreased transduction abilities. Mol Gen Genet 119:75–88
    [Google Scholar]
  25. Tsai C.-M., Frasch C. E. 1982; A sensitive silver stain for detecting lipopolysaccharides in polyacrylamide gels. Anal Biochem 119:115–119
    [Google Scholar]
  26. Ugalde J. E., Czibener C., Feldman M. F., Ugalde R. A. 2000; Identification and characterization of the Brucella abortus phosphoglucomutase gene: role of lipopolysaccharide in virulence and intracellular multiplication. Infect Immun 68:5716–5723
    [Google Scholar]
  27. Ugalde J. E., Comerci D. J., Leguizamon M. S., Ugalde R. A. 2003; Evaluation of Brucella abortus phosphoglucomutase ( pgm) mutant as a new live rough-phenotype vaccine. Infect Immun 71:6264–6269
    [Google Scholar]
  28. West N. P., Jungnitz H., Fitter J. T., McArthur J. D., Guzman C. A., Walker M. J. 2000; Role of phosphoglucomutase of Bordetella bronchiseptica in lipopolysaccharide biosynthesis and virulence. Infect Immun 68:4673–4680
    [Google Scholar]
  29. Wilson C. L., Ouellette A. J., Satchell D. P., Ayabe T., Lopez-Boado Y. S., Stratman J. L., Hultgren S. J., Matrisian L. M., Parks W. C. 1999; Regulation of intestinal alpha-defensin activation by the metalloproteinase matrilysin in innate host defense. Science 286:113–117
    [Google Scholar]
/content/journal/micro/10.1099/mic.0.029553-0
Loading
/content/journal/micro/10.1099/mic.0.029553-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error