1887

Abstract

The phosphoenolpyruvate : carbohydrate phosphotransferase system (PTS) catalyses carbohydrate transport by coupling it to phosphorylation. Previously, we reported a R -glucoside PTS encoded by . Here we report that R contains an additional -glucoside PTS gene, , organized in a cluster with a putative phospho--glucosidase gene, , and a putative antiterminator, . While single gene disruption strains of either or were able to utilize salicin or arbutin as sole carbon sources, a double disruption strain exhibited defects in utilization of both carbon sources. Expression of both and was induced in the presence of either salicin or arbutin, although disruption of affected only expression. Moreover, in the presence of either salicin or arbutin, glucose completely repressed the expression of but only slightly repressed that of . We conclude that BglF and BglF2 have a redundant role in -glucoside transport even though the catabolite repression control of their encoding genes is different. We also show that expression of both and requires the general PTS.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.029496-0
2009-11-01
2020-07-07
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/11/3652.html?itemId=/content/journal/micro/10.1099/mic.0.029496-0&mimeType=html&fmt=ahah

References

  1. Amster-Choder O.. 2005; The bgl sensory system: a transmembrane signaling pathway controlling transcriptional antitermination. Curr Opin Microbiol8:127–134
    [Google Scholar]
  2. Cote C. K., Cvitkovitch D., Bleiweis A. S., Honeyman A. L.. 2000; A novel beta-glucoside-specific PTS locus from Streptococcus mutans that is not inhibited by glucose. Microbiology146:1555–1563
    [Google Scholar]
  3. Deutscher J., Francke C., Postma P. W.. 2006; How phosphotransferase system-related protein phosphorylation regulates carbohydrate metabolism in bacteria. Microbiol Mol Biol Rev70:939–1031
    [Google Scholar]
  4. Dominguez H., Lindley N. D.. 1996; Complete sucrose metabolism requires fructose phosphotransferase activity in Corynebacterium glutamicum to ensure phosphorylation of liberated fructose. Appl Environ Microbiol62:3878–3880
    [Google Scholar]
  5. Dominguez H., Cocaign-Bousquet M., Lindley N. D.. 1997; Simultaneous consumption of glucose and fructose from sugar mixtures during batch growth of Corynebacterium glutamicum. Appl Microbiol Biotechnol47:600–603
    [Google Scholar]
  6. Engels V., Wendish V. H.. 2007; The DeoR-type regulator SugR represses expression of ptsG in Corynebacterium glutamicum. J Bacteriol189:2955–2966
    [Google Scholar]
  7. Gaigalat L., Schlüter J. P., Hartmann M., Mormann S., Tauch A., Pühler A., Kalinowski J.. 2007; The DeoR-type transcriptional regulator SugR acts as a repressor for genes encoding the phosphoenolpyruvate : sugar phosphotransferase system (PTS) in Corynebacterium glutamicum. BMC Mol Biol8:104
    [Google Scholar]
  8. Hong S. Y., An C. L., Cho K. M., Lee S. M., Kim Y. H., Kim M. K., Cho S. J., Lim Y. P., Kim H., Yun H. D.. 2006; Cloning and comparison of third beta-glucoside utilization ( bglEFIA) operon with two operons of Pectobacterium carotovorum subsp. carotovorum LY34. Biosci Biotechnol Biochem70:798–807
    [Google Scholar]
  9. Ikeda M., Nakagawa S.. 2003; The Corynebacterium glutamicum genome: features and impacts on biotechnological processes. Appl Microbiol Biotechnol62:99–109
    [Google Scholar]
  10. Inui M., Murakami S., Okino S., Kawaguchi H., Vertès A. A., Yukawa H.. 2004a; Metabolic analysis of Corynebacterium glutamicum during lactate and succinate productions under oxygen deprivation conditions. J Mol Microbiol Biotechnol7:182–196
    [Google Scholar]
  11. Inui M., Kawaguchi H., Murakami S., Vertès A. A., Yukawa H.. 2004b; Metabolic engineering of Corynebacterium glutamicum for fuel production under oxygen deprivation conditions. J Mol Microbiol Biotechnol8:243–254
    [Google Scholar]
  12. Inui M., Suda M., Okino S., Nonaka H., Puskás L. G., Vertès A. A., Yukawa H.. 2007; Transcriptional profiling of Corynebacterium glutamicum metabolism during organic acid production under oxygen deprivation conditions. Microbiology153:2491–2504
    [Google Scholar]
  13. Kalinowski J., Bathe B., Bartels D., Bischoff N., Bott M., Burkovski A., Dusch N., Eggeling L., Eikmanns B. J.. other authors 2003; The complete Corynebacterium glutamicum ATCC 13032 genome sequence and its impact on the production of l-aspartate-derived amino acids and vitamins. J Biotechnol104:5–25
    [Google Scholar]
  14. Kelle R., Hermann T., Bathe B.. 2005; l-Lysine production. In Handbook of Corynebacterium glutamicum pp465–488 Edited by Eggeling L., Bott M. Boca Raton, FL: CRC Press;
    [Google Scholar]
  15. Kinoshita S., Udaka S., Shimono M.. 2004; Studies on the amino acid fermentation. I. Production of l-glutamic acid by various microorganisms. J Gen Appl Microbiol50:331–343
    [Google Scholar]
  16. Kotrba P., Inui M., Yukawa H.. 2001a; Bacterial phosphotransferase system (PTS) in carbohydrate uptake and control of carbon metabolism. J Biosci Bioeng92:502–517
    [Google Scholar]
  17. Kotrba P., Inui M., Yukawa H.. 2001b; The ptsI gene encoding enzyme I of the phosphotransferase system of Corynebacterium glutamicum. Biochem Biophys Res Commun289:1307–1313
    [Google Scholar]
  18. Kotrba P., Inui M., Yukawa H.. 2003; A single V317A or V317M substitution in Enzyme II of a newly identified beta-glucoside phosphotransferase and utilization system of Corynebacterium glutamicum R extends its specificity towards cellobiose. Microbiology149:1569–1580
    [Google Scholar]
  19. Krüger S., Hecker M.. 1995; Regulation of the putative bglPH operon for aryl-beta-glucoside utilization in Bacillus subtilis. J Bacteriol177:5590–5597
    [Google Scholar]
  20. Moon M. W., Kim H. J., Oh T. K., Shin C. S., Lee J. S., Kim S. J., Lee J. K.. 2005; Analyses of enzyme II gene mutants for sugar transport and heterologous expression of fructokinase gene in Corynebacterium glutamicum ATCC 13032. FEMS Microbiol Lett244:259–266
    [Google Scholar]
  21. Mori M., Shiio I.. 1987; Phosphoenolpyruvate, sugar phosphotransferase systems and sugar metabolism in Brevibacterium flavum. Agric Biol Chem51:2671–2678
    [Google Scholar]
  22. Okino S., Noburyu R., Suda M., Jojima T., Inui M., Yukawa H.. 2008a; An efficient succinic acid production process in a metabolically engineered Corynebacterium glutamicum strain. Appl Microbiol Biotechnol81:459–464
    [Google Scholar]
  23. Okino S., Suda M., Fujikura K., Inui M., Yukawa H.. 2008b; Production of d-lactic acid by Corynebacterium glutamicum under oxygen deprivation. Appl Microbiol Biotechnol78:449–454
    [Google Scholar]
  24. Parche S., Burkovski A., Sprenger G. A., Weil B., Krämer R., Titgemeyer F.. 2001; Corynebacterium glutamicum, a dissection of the PTS. J Mol Microbiol Biotechnol3:423–428
    [Google Scholar]
  25. Parker L. L., Hall B. G.. 1988; A fourth Escherichia coli gene system with the potential to evolve β-glucoside utilization. Genetics119:485–490
    [Google Scholar]
  26. Postma P. W., Lengeler J. W., Jacobson G. R.. 1993; Phosphoenolpyruvate, carbohydrate phosphotransferase systems of bacteria. Microbiol Rev57:543–594
    [Google Scholar]
  27. Sasaki M., Jojima T., Inui M., Yukawa H.. 2008; Simultaneous utilization of d-cellobiose, d-glucose, and d-xylose by recombinant Corynebacterium glutamicum under oxygen-deprived conditions. Appl Microbiol Biotechnol81:691–699
    [Google Scholar]
  28. Stülke J., Hillen W.. 2000; Regulation of carbon catabolism in Bacillus species. Annu Rev Microbiol54:849–880
    [Google Scholar]
  29. Tanaka Y., Teramoto H., Inui M., Yukawa H.. 2008a; Regulation of expression of phosphoenolpyruvate : carbohydrate phosphotransferase system (PTS) genes in Corynebacterium glutamicum. Microbiology154:264–274
    [Google Scholar]
  30. Tanaka Y., Teramoto H., Inui M., Yukawa H.. 2008b; Regulation of expression of general components of the phosphoenolpyruvate : carbohydrate phosphotransferase system (PTS) by the global regulator SugR in Corynebacterium glutamicum. Appl Microbiol Biotechnol78:309–318
    [Google Scholar]
  31. Wendisch V. F., de Graaf A. A., Sahm H., Eikmanns B. J.. 2000; Quantitative determination of metabolic fluxes during coutilization of two carbon sources, comparative analyses with Corynebacterium glutamicum during growth on acetate and/or glucose. J Bacteriol182:3088–3096
    [Google Scholar]
  32. Yang Y., Declerck N., Manival X., Aymerich S., Kochoyan M.. 2002; Solution structure of the LicT-RNA antitermination complex: CAT clamping RAT. EMBO J21:1987–1997
    [Google Scholar]
  33. Yukawa H., Omumasaba C. A., Nonaka H., Kos P., Okai N., Suzuki N., Suda M., Tsuge Y., Watanabe J.. other authors 2007; Comparative analysis of the Corynebacterium glutamicum group and complete genome sequence of strain R. Microbiology153:1042–1058
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.029496-0
Loading
/content/journal/micro/10.1099/mic.0.029496-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error