1887

Abstract

In this study, differences at the genetic level of 37 Enteritidis strains from five phage types (PTs) were compared using comparative genomic hybridization (CGH) to assess differences between PTs. There were approximately 400 genes that differentiated prevalent (4, 6, 8 and 13a) and sporadic (11) PTs, of which 35 were unique to prevalent PTs, including six plasmid-borne genes, , , , , and , and four chromosomal genes encoding putative amino acid transporters. Phenotype array studies also demonstrated that strains from prevalent PTs were less susceptible to urea stress and utilized -histidine, -glutamine, -proline, -aspartic acid, gly-asn and gly-gln more efficiently than PT11 strains. Complementation of a PT11 strain with the transporter genes from PT4 resulted in a significant increase in utilization of the amino acids and reduced susceptibility to urea stress. In epithelial cell association assays, PT11 strains were less invasive than other prevalent PTs. Most strains from prevalent PTs were better biofilm formers at 37 °C than at 28 °C, whilst the converse was true for PT11 strains. Collectively, the results indicate that genetic and corresponding phenotypic differences exist between strains of the prevalent PTs 4, 6, 8 and 13a and non-prevalent PT11 strains that are likely to provide a selective advantage for strains from the former PTs and could help them to enter the food chain and cause salmonellosis.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.029405-0
2009-10-01
2020-01-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/10/3200.html?itemId=/content/journal/micro/10.1099/mic.0.029405-0&mimeType=html&fmt=ahah

References

  1. Ahmer, B. M., van Reeuwijk, J., Timmers, C. D., Valentine, P. J. & Heffron, F. ( 1998; ). Salmonella typhimurium encodes an SdiA homolog, a putative quorum sensor of the LuxR family, that regulates genes on the virulence plasmid. J Bacteriol 180, 1185–1193.
    [Google Scholar]
  2. Allen-Vercoe, E., Dibb-Fuller, M., Thorns, C. J. & Woodward, M. J. ( 1997; ). SEF17 fimbriae are essential for the convoluted colonial morphology of Salmonella enteritidis. FEMS Microbiol Lett 153, 33–42.[CrossRef]
    [Google Scholar]
  3. Anjum, M. F., Marooney, C., Fookes, M., Baker, S., Dougan, G., Ivens, A. & Woodward, M. J. ( 2005; ). Identification of core and variable components of the Salmonella enterica subspecies I genome by microarray. Infect Immun 73, 7894–7905.[CrossRef]
    [Google Scholar]
  4. Balaji, B., O'Connor, K., Lucas, J. R., Anderson, J. M. & Csonka, L. N. ( 2005; ). Timing of induction of osmotically controlled genes in Salmonella enterica serovar Typhimurium, determined with quantitative real-time reverse transcription-PCR. Appl Environ Microbiol 71, 8273–8283.[CrossRef]
    [Google Scholar]
  5. Baumler, A. J., Tsolis, R. M., Bowe, F. A., Kusters, J. G., Hoffmann, S. & Heffron, F. ( 1996; ). The pef fimbrial operon of Salmonella typhimurium mediates adhesion to murine small intestine and is necessary for fluid accumulation in the infant mouse. Infect Immun 64, 61–68.
    [Google Scholar]
  6. Baumler, A. J., Hargis, B. M. & Tsolis, R. M. ( 2000; ). Tracing the origins of Salmonella outbreaks. Science 287, 50–52.[CrossRef]
    [Google Scholar]
  7. Boccia, D., Oliver, C. I., Charlett, A., Bennett, S., Orr, H., Sarangi, J. & Stuart, J. ( 2004; ). Outbreak of a new Salmonella phage type in South West England: alternative epidemiological investigations are needed. Commun Dis Public Health 7, 339–343.
    [Google Scholar]
  8. Bolton, A. J., Osborne, M. P. & Stephen, J. ( 2000; ). Comparative study of the invasiveness of Salmonella serotypes Typhimurium, Choleraesuis and Dublin for Caco-2 cells, HEp-2 cells and rabbit ileal epithelia. J Med Microbiol 49, 503–511.
    [Google Scholar]
  9. Bonafonte, M. A., Solano, C., Sesma, B., Alvarez, M., Montuenga, L., Garcia-Ros, D. & Gamazo, C. ( 2000; ). The relationship between glycogen synthesis, biofilm formation and virulence in Salmonella enteritidis. FEMS Microbiol Lett 191, 31–36.[CrossRef]
    [Google Scholar]
  10. Brown, D. J., Baggesen, D. L., Platt, D. J. & Olsen, J. E. ( 1999; ). Phage type conversion in Salmonella enterica serotype Enteritidis caused by the introduction of a resistance plasmid of incompatibility group X (IncX). Epidemiol Infect 122, 19–22.[CrossRef]
    [Google Scholar]
  11. Carter, B., Wu, G., Woodward, M. J. & Anjum, M. F. ( 2008; ). A process for analysis of microarray comparative genomics hybridisation studies for bacterial genomes. BMC Genomics 9, 53 [CrossRef]
    [Google Scholar]
  12. Clavijo, R. I., Loui, C., Andersen, G. L., Riley, L. W. & Lu, S. ( 2006; ). Identification of genes associated with survival of Salmonella enterica serovar Enteritidis in chicken egg albumen. Appl Environ Microbiol 72, 1055–1064.[CrossRef]
    [Google Scholar]
  13. Collighan, R. J. & Woodward, M. J. ( 2001; ). The SEF14 fimbrial antigen of Salmonella enterica serovar Enteritidis is encoded within a pathogenicity islet. Vet Microbiol 80, 235–245.[CrossRef]
    [Google Scholar]
  14. Cooke, F. J., Wain, J., Fookes, M., Ivens, A., Thomson, N., Brown, D. J., Threlfall, E. J., Gunn, G., Foster, G. & Dougan, G. ( 2007; ). Prophage sequences defining hot spots of genome variation in Salmonella enterica serovar Typhimurium can be used to discriminate between field isolates. J Clin Microbiol 45, 2590–2598.[CrossRef]
    [Google Scholar]
  15. Csonka, L. N., Ikeda, T. P., Fletcher, S. A. & Kustu, S. ( 1994; ). The accumulation of glutamate is necessary for optimal growth of Salmonella typhimurium in media of high osmolality but not induction of the proU operon. J Bacteriol 176, 6324–6333.
    [Google Scholar]
  16. Datsenko, K. A. & Wanner, B. L. ( 2000; ). One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 97, 6640–6645.[CrossRef]
    [Google Scholar]
  17. Dibb-Fuller, M. P., Allen-Vercoe, E., Thorns, C. J. & Woodward, M. J. ( 1999; ). Fimbriae- and flagella-mediated association with and invasion of cultured epithelial cells by Salmonella enteritidis. Microbiology 145, 1023–1031.[CrossRef]
    [Google Scholar]
  18. Echeita, M. A., Aladuena, A. M., Diez, R., Arroyo, M., Cerdan, F., Gutierrez, R., de la Fuente, M., Gonzalez-Sanz, R., Herrera-Leon, S. & Usera, M. A. ( 2005; ). Serotype and phage type distribution of human Salmonella strains isolated in Spain, 1997–2001. Enferm Infecc Microbiol Clin 23, 127–134.[CrossRef]
    [Google Scholar]
  19. European Food Safety Authority ( 2008; ). The Community Summary Report on Trends and Sources of Zoonoses and Zoonotic Agents in the European Union in 2007. http://www.efsa.europa.eu/EFSA/efsa_locale-1178620753812_1211902269834.htm.
  20. Gatto, A. J., Peters, T. M., Green, J., Fisher, I. S., Gill, O. N., O'Brien, S. J., Maguire, C., Berghold, C., Lederer, I. & other authors ( 2006; ). Distribution of molecular subtypes within Salmonella enterica serotype Enteritidis phage type 4 and S. Typhimurium definitive phage type 104 in nine European countries, 2000–2004: results of an international multi-centre study. Epidemiol Infect 134, 729–736.[CrossRef]
    [Google Scholar]
  21. Gillespie, I. A., O'Brien, S. J., Adak, G. K., Ward, L. R. & Smith, H. R. ( 2005; ). Foodborne general outbreaks of Salmonella Enteritidis phage type 4 infection, England and Wales, 1992–2002: where are the risks? Epidemiol Infect 133, 795–801.[CrossRef]
    [Google Scholar]
  22. Grothe, S., Krogsrud, R. L., McClellan, D. J., Milner, J. L. & Wood, J. M. ( 1986; ). Proline transport and osmotic stress response in Escherichia coli K-12. J Bacteriol 166, 253–259.
    [Google Scholar]
  23. Guard-Petter, J. ( 1999; ). Phage type and other outer-membrane characteristics of Salmonella enterica serovar Enteritidis associated with virulence. In Salmonella Enterica Serovar Enteritidis in Humans and Animals (Epidemiology, Pathogenesis and Control), pp. 221–232. Edited by R. K. Gast, A. M. Saeed, M. E. Potter & P. G. Wall. Ames, IA: Iowa State University Press.
  24. Gulig, P. A., Danbara, H., Guiney, D. G., Lax, A. J., Norel, F. & Rhen, M. ( 1993; ). Molecular analysis of spv virulence genes of the Salmonella virulence plasmids. Mol Microbiol 7, 825–830.[CrossRef]
    [Google Scholar]
  25. Hosie, A. H. & Poole, P. S. ( 2001; ). Bacterial ABC transporters of amino acids. Res Microbiol 152, 259–270.[CrossRef]
    [Google Scholar]
  26. Jain, S. & Chen, J. ( 2007; ). Attachment and biofilm formation by various serotypes of Salmonella as influenced by cellulose production and thin aggregative fimbriae biosynthesis. J Food Prot 70, 2473–2479.
    [Google Scholar]
  27. Kang, M. S., Besser, T. E., Hancock, D. D., Porwollik, S., McClelland, M. & Call, D. R. ( 2006; ). Identification of specific gene sequences conserved in contemporary epidemic strains of Salmonella enterica. Appl Environ Microbiol 72, 6938–6947.[CrossRef]
    [Google Scholar]
  28. Korber, D. R., Greer, G. G., Wolfaardt, G. M. & Kohlman, S. ( 2002; ). Efficacy enhancement of trisodium phosphate against spoilage and pathogenic bacteria in model biofilms and on adipose tissue. J Food Prot 65, 627–635.
    [Google Scholar]
  29. Ledeboer, N. A., Frye, J. G., McClelland, M. & Jones, B. D. ( 2006; ). Salmonella enterica serovar Typhimurium requires the Lpf, Pef, and Tafi fimbriae for biofilm formation on HEp-2 tissue culture cells and chicken intestinal epithelium. Infect Immun 74, 3156–3169.[CrossRef]
    [Google Scholar]
  30. Lukinmaa, S., Nakari, U. M., Liimatainen, A. & Siitonen, A. ( 2006; ). Genomic diversity within phage types of Salmonella enterica ssp. enterica serotypes Enteritidis and Typhimurium. Foodborne Pathog Dis 3, 97–105.[CrossRef]
    [Google Scholar]
  31. Mireles, J. R., II, Toguchi, A. & Harshey, R. M. ( 2001; ). Salmonella enterica serovar Typhimurium swarming mutants with altered biofilm-forming abilities: surfactin inhibits biofilm formation. J Bacteriol 183, 5848–5854.[CrossRef]
    [Google Scholar]
  32. Morales, C. A., Porwollik, S., Frye, J. G., Kinde, H., McClelland, M. & Guard-Bouldin, J. ( 2005; ). Correlation of phenotype with the genotype of egg-contaminating Salmonella enterica serovar Enteritidis. Appl Environ Microbiol 71, 4388–4399.[CrossRef]
    [Google Scholar]
  33. Nikaido, K., Liu, P. Q. & Ames, G. F. ( 1997; ). Purification and characterization of HisP, the ATP-binding subunit of a traffic ATPase (ABC transporter), the histidine permease of Salmonella typhimurium. Solubility, dimerization, and ATPase activity. J Biol Chem 272, 27745–27752.[CrossRef]
    [Google Scholar]
  34. Porwollik, S., Santiviago, C. A., Cheng, P., Florea, L. & McClelland, M. ( 2005; ). Differences in gene content between Salmonella enterica serovar Enteritidis isolates and comparison to closely related serovars Gallinarum and Dublin. J Bacteriol 187, 6545–6555.[CrossRef]
    [Google Scholar]
  35. Rodrigue, D. C., Tauxe, R. V. & Rowe, B. ( 1990; ). International increase in Salmonella enteritidis: a new pandemic? Epidemiol Infect 105, 21–27.[CrossRef]
    [Google Scholar]
  36. Smith, J. N. & Ahmer, B. M. ( 2003; ). Detection of other microbial species by Salmonella: expression of the SdiA regulon. J Bacteriol 185, 1357–1366.[CrossRef]
    [Google Scholar]
  37. Solano, C., Sesma, B., Alvarez, M., Humphrey, T. J., Thorns, C. J. & Gamazo, C. ( 1998; ). Discrimination of strains of Salmonella enteritidis with differing levels of virulence by an in vitro glass adherence test. J Clin Microbiol 36, 674–678.
    [Google Scholar]
  38. Solano, C., Sesma, B., Alvarez, M., Urdaneta, E., Garcia-Ros, D., Calvo, A. & Gamazo, C. ( 2001; ). Virulent strains of Salmonella enteritidis disrupt the epithelial barrier of Caco-2 and HEp-2 cells. Arch Microbiol 175, 46–51.[CrossRef]
    [Google Scholar]
  39. Thomson, N., Baker, S., Pickard, D., Fookes, M., Anjum, M., Hamlin, N., Wain, J., House, D., Bhutta, Z. & other authors ( 2004; ). The role of prophage-like elements in the diversity of Salmonella enterica serovars. J Mol Biol 339, 279–300.[CrossRef]
    [Google Scholar]
  40. Usera, M. A., Popovic, T., Bopp, C. A. & Strockbine, N. A. ( 1994; ). Molecular subtyping of Salmonella enteritidis phage type 8 strains from the United States. J Clin Microbiol 32, 194–198.
    [Google Scholar]
  41. van der Velden, A. W., Baumler, A. J., Tsolis, R. M. & Heffron, F. ( 1998; ). Multiple fimbrial adhesins are required for full virulence of Salmonella typhimurium in mice. Infect Immun 66, 2803–2808.
    [Google Scholar]
  42. Ward, L. R., de Sa, J. D. & Rowe, B. ( 1987; ). A phage-typing scheme for Salmonella enteritidis. Epidemiol Infect 99, 291–294.[CrossRef]
    [Google Scholar]
  43. Ward, L. R., Threlfall, J., Smith, H. R. & O'Brien, S. J. ( 2000; ). Salmonella enteritidis epidemic. Science 287, 1753–1754.
    [Google Scholar]
  44. Weening, E. H., Barker, J. D., Laarakker, M. C., Humphries, A. D., Tsolis, R. M. & Baumler, A. J. ( 2005; ). The Salmonella enterica serotype Typhimurium lpf, bcf, stb, stc, std, and sth fimbrial operons are required for intestinal persistence in mice. Infect Immun 73, 3358–3366.[CrossRef]
    [Google Scholar]
  45. White, P. L., Naugle, A. L., Jackson, C. R., Fedorka-Cray, P. J., Rose, B. E., Pritchard, K. M., Levine, P., Saini, P. K., Schroeder, C. M. & other authors ( 2007; ). Salmonella enteritidis in meat, poultry, and pasteurized egg products regulated by the U.S. Food Safety and Inspection Service, 1998 through 2003. J Food Prot 70, 582–591.
    [Google Scholar]
  46. Wissenbach, U., Six, S., Bongaerts, J., Ternes, D., Steinwachs, S. & Unden, G. ( 1995; ). A third periplasmic transport system for l-arginine in Escherichia coli: molecular characterization of the artPIQMJ genes, arginine binding and transport. Mol Microbiol 17, 675–686.[CrossRef]
    [Google Scholar]
  47. Woodward, M. J., Sojka, M., Sprigings, K. A. & Humphrey, T. J. ( 2000; ). The role of SEF14 and SEF17 fimbriae in the adherence of Salmonella enterica serotype Enteritidis to inanimate surfaces. J Med Microbiol 49, 481–487.
    [Google Scholar]
  48. Wright, C. A. & Beattie, G. A. ( 2004; ). Bacterial species specificity in proU osmoinducibility and nptII and lacZ expression. J Mol Microbiol Biotechnol 8, 201–208.[CrossRef]
    [Google Scholar]
  49. Wu, G., Carter, B., Mafura, M., Liebana, E., Woodward, M. J. & Anjum, M. F. ( 2008; ). Genetic diversity among Escherichia coli O157 : H7 isolates and identification of genes linked to human infections. Infect Immun 76, 845–856.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.029405-0
Loading
/content/journal/micro/10.1099/mic.0.029405-0
Loading

Data & Media loading...

Supplements

[PDF file](48 KB)

PDF

[PDF file](54 KB)

PDF

[Excel file](26 KB)

EXCEL

[Excel file](937 KB)

EXCEL

[Excel file](30 KB)

EXCEL

[Excel file](28 KB)

EXCEL

[PDF file](47 KB)

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error