1887

Abstract

The actin cytoskeleton is involved in many processes in eukaryotic cells, including interaction with a wide variety of actin-binding proteins such as the actin-capping proteins, the actin filament nucleators and the actin cross-linking proteins. Here, we report the identification and characterization of an actinin-like protein (AcnA) from the filamentous fungus . Not only did the depletion of AcnA by (p) promoter repression or the deletion of AcnA result in explicit abnormalities in septation and conidiation, but also the mutants induced a loss of apical dominance in cells with dichotomous branching, in which a new branch was formed by splitting the existing tip in two. Consequently, the colony showed flabellate edges. Moreover, we found that the localization of the GFP–AcnA fusion was quite dynamic. In the isotropic expansion phase of the germinated spore, GFP–AcnA was organized as cortical patches with cables lining the cell wall. Subsequently, GFP–AcnA was localized to the actively growing hyphal tips and to the sites of septation in the form of combined double contractile rings. Our data suggest that AcnA plays an important role in cytokinesis and apical dominance of hyphal cells, possibly via actin-dependent polarization maintenance and medial ring establishment in . This is the first report, to our knowledge, of the function of an actinin-like protein in filamentous fungi.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.029215-0
2009-08-01
2019-10-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/8/2714.html?itemId=/content/journal/micro/10.1099/mic.0.029215-0&mimeType=html&fmt=ahah

References

  1. Araujo-Bazan, L., Penalva, M. A. & Espeso, E. A. ( 2008; ). Preferential localization of the endocytic internalization machinery to hyphal tips underlies polarization of the actin cytoskeleton in Aspergillus nidulans. Mol Microbiol 67, 891–905.[CrossRef]
    [Google Scholar]
  2. Boyce, K. J., Hynes, M. J. & Andrianopoulos, A. ( 2003; ). Control of morphogenesis and actin localization by the Penicillium marneffei RAC homolog. J Cell Sci 116, 1249–1260.[CrossRef]
    [Google Scholar]
  3. Broderick, M. J. & Winder, S. J. ( 2005; ). Spectrin, α-actinin, and dystrophin. Adv Protein Chem 70, 203–246.
    [Google Scholar]
  4. Cabello, N., Remelli, R., Canela, L., Soriguera, A., Mallol, J., Canela, E. I., Robbins, M. J., Lluis, C., Franco, R. & other authors ( 2007; ). Actin-binding protein α-actinin-1 interacts with the metabotropic glutamate receptor type 5b and modulates the cell surface expression and function of the receptor. J Biol Chem 282, 12143–12153.[CrossRef]
    [Google Scholar]
  5. Chi, R. J., Simon, A. R., Bienkiewicz, E. A., Felix, A. & Keller, T. C., III ( 2008; ). Smooth muscle titin Zq domain interaction with the smooth muscle α-actinin central rod. J Biol Chem 283, 20959–20967.[CrossRef]
    [Google Scholar]
  6. Choi, C. K., Vicente-Manzanares, M., Zareno, J., Whitmore, L. A., Mogilner, A. & Horwitz, A. R. ( 2008; ). Actin and α-actinin orchestrate the assembly and maturation of nascent adhesions in a myosin II motor-independent manner. Nat Cell Biol 10, 1039–1050.[CrossRef]
    [Google Scholar]
  7. Dixson, J. D., Forstner, M. J. & Garcia, D. M. ( 2003; ). The α-actinin gene family: a revised classification. J Mol Evol 56, 1–10.[CrossRef]
    [Google Scholar]
  8. Ebashi, S. & Ebashi, F. ( 1965; ). α-Actinin, a new structural protein from striated muscle. I. Preparation and action on actomyosin–ATP interaction. J Biochem 58, 7–12.
    [Google Scholar]
  9. Fischer, R., Zekert, N. & Takeshita, N. ( 2008; ). Polarized growth in fungi – interplay between the cytoskeleton, positional markers and membrane domains. Mol Microbiol 68, 813–826.[CrossRef]
    [Google Scholar]
  10. Flood, G. J., Gratzer, W. B., Kahana, E., Rowe, A. J. & Critchley, D. R. ( 1995; ). Association of structural repeats in alpha-actinin. Biochem Soc Trans 23, 399S
    [Google Scholar]
  11. Fujiwara, K., Porter, M. E. & Pollard, T. D. ( 1978; ). Alpha-actinin localization in the cleavage furrow during cytokinesis. J Cell Biol 79, 268–275.[CrossRef]
    [Google Scholar]
  12. Furukawa, R. & Fechheimer, M. ( 1994; ). Differential localization of α-actinin and the 30 kD actin-bundling protein in the cleavage furrow, phagocytic cup, and contractile vacuole of Dictyostelium discoideum. Cell Motil Cytoskeleton 29, 46–56.[CrossRef]
    [Google Scholar]
  13. Furukawa, R., Maselli, A., Thomson, S. A., Lim, R. W., Stokes, J. V. & Fechheimer, M. ( 2003; ). Calcium regulation of actin crosslinking is important for function of the actin cytoskeleton in Dictyostelium. J Cell Sci 116, 187–196.[CrossRef]
    [Google Scholar]
  14. Harispe, L., Portela, C., Scazzocchio, C., Penalva, M. A. & Gorfinkiel, L. ( 2008; ). Ras GTPase-activating protein regulation of actin cytoskeleton and hyphal polarity in Aspergillus nidulans. Eukaryot Cell 7, 141–153.[CrossRef]
    [Google Scholar]
  15. Harris, S. D. ( 2001; ). Septum formation in Aspergillus nidulans. Curr Opin Microbiol 4, 736–739.[CrossRef]
    [Google Scholar]
  16. Harris, S. D. ( 2006; ). Cell polarity in filamentous fungi: shaping the mold. Int Rev Cytol 251, 41–77.
    [Google Scholar]
  17. Harris, S. D., Morrell, J. L. & Hamer, J. E. ( 1994; ). Identification and characterization of Aspergillus nidulans mutants defective in cytokinesis. Genetics 136, 517–532.
    [Google Scholar]
  18. Heasman, S. J. & Ridley, A. J. ( 2008; ). Mammalian Rho GTPases: new insights into their functions from in vivo studies. Nat Rev Mol Cell Biol 9, 690–701.[CrossRef]
    [Google Scholar]
  19. Kafer, E. ( 1977; ). Meiotic and mitotic recombination in Aspergillus and its chromosomal aberrations. Adv Genet 19, 33–131.
    [Google Scholar]
  20. Leeder, A. C. & Turner, G. ( 2008; ). Characterisation of Aspergillus nidulans polarisome component BemA. Fungal Genet Biol 45, 897–911.[CrossRef]
    [Google Scholar]
  21. Liu, B. & Morris, N. R. ( 2000; ). A spindle pole body-associated protein, SNAD, affects septation and conidiation in Aspergillus nidulans. Mol Gen Genet 263, 375–387.[CrossRef]
    [Google Scholar]
  22. Mabuchi, I., Hamaguchi, Y., Kobayashi, T., Hosoya, H. & Tsukita, S. ( 1985; ). Alpha-actinin from sea urchin eggs: biochemical properties, interaction with actin, and distribution in the cell during fertilization and cleavage. J Cell Biol 100, 375–383.[CrossRef]
    [Google Scholar]
  23. May, G. S. ( 1989; ). The highly divergent β-tubulins of Aspergillus nidulans are functionally interchangeable. J Cell Biol 109, 2267–2274.[CrossRef]
    [Google Scholar]
  24. McCluskey, K. ( 2003; ). The Fungal Genetics Stock Center: from molds to molecules. Adv Appl Microbiol 52, 245–262.
    [Google Scholar]
  25. Momany, M. ( 2005; ). Growth control and polarization. Med Mycol 43 (suppl, 1), S23–S25.[CrossRef]
    [Google Scholar]
  26. Mukhina, S., Wang, Y. L. & Murata-Hori, M. ( 2007; ). α-Actinin is required for tightly regulated remodeling of the actin cortical network during cytokinesis. Dev Cell 13, 554–565.[CrossRef]
    [Google Scholar]
  27. Nayak, T., Szewczyk, E., Oakley, C. E., Osmani, A., Ukil, L., Murray, S. L., Hynes, M. J., Osmani, S. A. & Oakley, B. R. ( 2006; ). A versatile and efficient gene-targeting system for Aspergillus nidulans. Genetics 172, 1557–1566.
    [Google Scholar]
  28. Osmani, S. A., Pu, R. T. & Morris, N. R. ( 1988; ). Mitotic induction and maintenance by overexpression of a G2-specific gene that encodes a potential protein kinase. Cell 53, 237–244.[CrossRef]
    [Google Scholar]
  29. Prigozhina, N. L., Walker, R. A., Oakley, C. E. & Oakley, B. R. ( 2001; ). γ-Tubulin and the C-terminal motor domain kinesin-like protein, KLPA, function in the establishment of spindle bipolarity in Aspergillus nidulans. Mol Biol Cell 12, 3161–3174.[CrossRef]
    [Google Scholar]
  30. Sadeghi, A., Doyle, A. D. & Johnson, B. D. ( 2002; ). Regulation of the cardiac L-type Ca2+ channel by the actin-binding proteins α-actinin and dystrophin. Am J Physiol Cell Physiol 282, C1502–C1511.[CrossRef]
    [Google Scholar]
  31. Sampson, K. & Heath, I. B. ( 2005; ). The dynamic behaviour of microtubules and their contributions to hyphal tip growth in Aspergillus nidulans. Microbiology 151, 1543–1555.[CrossRef]
    [Google Scholar]
  32. Sanger, J. M., Mittal, B., Pochapin, M. B. & Sanger, J. W. ( 1987; ). Stress fiber and cleavage furrow formation in living cells microinjected with fluorescently labeled α-actinin. Cell Motil Cytoskeleton 7, 209–220.[CrossRef]
    [Google Scholar]
  33. Santella, L., Puppo, A. & Chun, J. T. ( 2008; ). The role of the actin cytoskeleton in calcium signaling in starfish oocytes. Int J Dev Biol 52, 571–584.[CrossRef]
    [Google Scholar]
  34. Schafer, D. A. & Schroer, T. A. ( 1999; ). Actin-related proteins. Annu Rev Cell Dev Biol 15, 341–363.[CrossRef]
    [Google Scholar]
  35. Schroer, T. A., Fyrberg, E., Cooper, J. A., Waterston, R. H., Helfman, D., Pollard, T. D. & Meyer, D. I. ( 1994; ). Actin-related protein nomenclature and classification. J Cell Biol 127, 1777–1778.[CrossRef]
    [Google Scholar]
  36. Schulz, T. W., Nakagawa, T., Licznerski, P., Pawlak, V., Kolleker, A., Rozov, A., Kim, J., Dittgen, T., Köhr, G. & other authors ( 2004; ). Actin/α-actinin-dependent transport of AMPA receptors in dendritic spines: role of the PDZ-LIM protein RIL. J Neurosci 24, 8584–8594.[CrossRef]
    [Google Scholar]
  37. Sharpless, K. E. & Harris, S. D. ( 2002; ). Functional characterization and localization of the Aspergillus nidulans formin SEPA. Mol Biol Cell 13, 469–479.[CrossRef]
    [Google Scholar]
  38. Shi, J., Chen, W., Liu, Q., Chen, S., Hu, H., Turner, G. & Lu, L. ( 2008; ). Depletion of the MobB and CotA complex in Aspergillus nidulans causes defects in polarity maintenance that can be suppressed by the environment stress. Fungal Genet Biol 45, 1570–1581.[CrossRef]
    [Google Scholar]
  39. Shih, J. L., Reck-Peterson, S. L., Newitt, R., Mooseker, M. S., Aebersold, R. & Herskowitz, I. ( 2005; ). Cell polarity protein Spa2P associates with proteins involved in actin function in Saccharomyces cerevisiae. Mol Biol Cell 16, 4595–4608.[CrossRef]
    [Google Scholar]
  40. Simon, J. R., Furukawa, R. H., Ware, B. R. & Taylor, D. L. ( 1988; ). The molecular mobility of α-actinin and actin in a reconstituted model of gelation. Cell Motil Cytoskeleton 11, 64–82.[CrossRef]
    [Google Scholar]
  41. Sjoblom, B., Salmazo, A. & Djinovic-Carugo, K. ( 2008; ). α-Actinin structure and regulation. Cell Mol Life Sci 65, 2688–2701.[CrossRef]
    [Google Scholar]
  42. Taheri-Talesh, N., Horio, T., Araujo-Bazan, L., Dou, X., Espeso, E. A., Penalva, M. A., Osmani, S. A. & Oakley, B. R. ( 2008; ). The tip growth apparatus of Aspergillus nidulans. Mol Biol Cell 19, 1439–1449.[CrossRef]
    [Google Scholar]
  43. Takeshita, N., Higashitsuji, Y., Konzack, S. & Fischer, R. ( 2008; ). Apical sterol-rich membranes are essential for localizing cell end markers that determine growth directionality in the filamentous fungus Aspergillus nidulans. Mol Biol Cell 19, 339–351.[CrossRef]
    [Google Scholar]
  44. Torralba, S., Raudaskoski, M., Pedregosa, A. M. & Laborda, F. ( 1998; ). Effect of cytochalasin A on apical growth, actin cytoskeleton organization and enzyme secretion in Aspergillus nidulans. Microbiology 144, 45–53.[CrossRef]
    [Google Scholar]
  45. Upadhyay, S. & Shaw, B. D. ( 2008; ). The role of actin, fimbrin and endocytosis in growth of hyphae in Aspergillus nidulans. Mol Microbiol 68, 690–705.[CrossRef]
    [Google Scholar]
  46. van Drogen, F. & Peter, M. ( 2002; ). Spa2p functions as a scaffold-like protein to recruit the Mpk1p MAP kinase module to sites of polarized growth. Curr Biol 12, 1698–1703.[CrossRef]
    [Google Scholar]
  47. Virag, A. & Harris, S. D. ( 2006; ). Functional characterization of Aspergillus nidulans homologues of Saccharomyces cerevisiae Spa2 and Bud6. Eukaryot Cell 5, 881–895.[CrossRef]
    [Google Scholar]
  48. Virag, A., Lee, M. P., Si, H. & Harris, S. D. ( 2007; ). Regulation of hyphal morphogenesis by cdc42 and rac1 homologues in Aspergillus nidulans. Mol Microbiol 66, 1579–1596.
    [Google Scholar]
  49. Virel, A. & Backman, L. ( 2004; ). Molecular evolution and structure of α-actinin. Mol Biol Evol 21, 1024–1031.[CrossRef]
    [Google Scholar]
  50. Virel, A. & Backman, L. ( 2007; ). A comparative and phylogenetic analysis of the α-actinin rod domain. Mol Biol Evol 24, 2254–2265.[CrossRef]
    [Google Scholar]
  51. Wang, G., Lu, L., Zhang, C. Y., Singapuri, A. & Yuan, S. ( 2006; ). Calmodulin concentrates at the apex of growing hyphae and localizes to the Spitzenkorper in Aspergillus nidulans. Protoplasma 228, 159–166.[CrossRef]
    [Google Scholar]
  52. Weins, A., Schlondorff, J. S., Nakamura, F., Denker, B. M., Hartwig, J. H., Stossel, T. P. & Pollak, M. R. ( 2007; ). Disease-associated mutant α-actinin-4 reveals a mechanism for regulating its F-actin-binding affinity. Proc Natl Acad Sci U S A 104, 16080–16085.[CrossRef]
    [Google Scholar]
  53. Westfall, P. J. & Momany, M. ( 2002; ). Aspergillus nidulans septin AspB plays pre- and postmitotic roles in septum, branch, and conidiophore development. Mol Biol Cell 13, 110–118.[CrossRef]
    [Google Scholar]
  54. Wu, J. Q., Bahler, J. & Pringle, J. R. ( 2001; ). Roles of a fimbrin and an α-actinin-like protein in fission yeast cell polarization and cytokinesis. Mol Biol Cell 12, 1061–1077.[CrossRef]
    [Google Scholar]
  55. Xiang, X. & Plamann, M. ( 2003; ). Cytoskeleton and motor proteins in filamentous fungi. Curr Opin Microbiol 6, 628–633.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.029215-0
Loading
/content/journal/micro/10.1099/mic.0.029215-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error