1887

Abstract

JMP134(pJP4) is able to grow on 3-chlorobenzoate (3-CB), a model chloroaromatic pollutant. Catabolism of 3-CB is achieved via the expression of the chromosomally encoded genes and the genes from plasmid pJP4. Since passive diffusion of benzoic acid derivatives at physiological pH is negligible, the uptake of this compound should be facilitated by a transport system. However, no transporter has so far been described to perform this function, and identification of chloroaromatic compound transporters has been limited. In this work, uptake experiments using 3-[-UL-C]CB showed an inducible transport system in strain JMP134, whose expression is activated by 3-CB and benzoate. A similar level of 3-CB uptake was found for a mutant strain of JMP134, defective in chlorobenzoate degradation, indicating that metabolic drag is not an important component of the measured uptake rate. Competitive inhibitor assays showed that uptake of 3-CB was inhibited by benzoate and, to a lesser degree, by 3-CB and 3,5-dichlorobenzoate, but not by any of 12 other substituted benzoates tested. The expression of several gene candidates for this transport function was analysed by RT-PCR, including both permease-type and ABC-type ATP-dependent transporters. Induction of a chromosomally encoded putative permease transporter ( gene) was found specifically in the presence of 3-CB or benzoate. A knockout mutant of strain JMP134 displayed an almost complete loss of 3-CB transport activity. This is to our knowledge the first report of a 3-CB transporter.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.029207-0
2009-08-01
2019-10-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/8/2757.html?itemId=/content/journal/micro/10.1099/mic.0.029207-0&mimeType=html&fmt=ahah

References

  1. Allende, J. L., Gibello, A., Martin, M. & Garrido-Pertierra, A. ( 1992; ). Transport of 4-hydroxyphenylacetic acid in Klebsiella pneumoniae. Arch Biochem Biophys 292, 583–588.[CrossRef]
    [Google Scholar]
  2. Allende, J. L., Suarez, M., Gallego, M. & Garrido-Pertierra, A. ( 1993; ). 4-Hydroxybenzoate uptake in Klebsiella pneumoniae is driven by electrical potential. Arch Biochem Biophys 300, 142–147.[CrossRef]
    [Google Scholar]
  3. Allende, J. L., Gibello, A., Fortún, A., Mengs, G., Ferrer, E. & Martín, M. ( 2000; ). 4-Hydroxybenzoate uptake in an isolated soil Acinetobacter sp. Curr Microbiol 40, 34–39.[CrossRef]
    [Google Scholar]
  4. Allende, J. L., Gibello, A., Fortún, A., Sánchez, M. & Martín, M. ( 2002; ). 4-Hydroxybenzoate uptake in Klebsiella planticola strain DSZ1 is driven by ΔpH. Curr Microbiol 44, 31–37.[CrossRef]
    [Google Scholar]
  5. Ausubel, F., Brent, R., Kingston, R., Moore, D., Seidman, J., Smith, J. & Struhl, K. (editors) ( 1992; ). Short Protocols in Molecular Biology, 2nd edn. New York: Greene Publishing Associates.
  6. Bradford, M. M. ( 1976; ). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72, 248–254.[CrossRef]
    [Google Scholar]
  7. Chae, J.-C. & Zylstra, G. J. ( 2006; ). 4-Chlorobenzoate uptake in Comamonas sp. strain DJ-12 is mediated by a tripartite ATP-independent periplasmic (TRAP) transporter. J Bacteriol 188, 8407–8412.[CrossRef]
    [Google Scholar]
  8. Chang, H.-K. & Zylstra, G. J. ( 1999; ). Characterization of the phthalate permease OphD from Burkholderia cepacia ATCC 17616. J Bacteriol 181, 6197–6199.
    [Google Scholar]
  9. Collier, L. S., Nichols, N. N. & Neidle, E. L. ( 1997; ). benK encodes a hydrophobic permease-like protein involved in benzoate degradation by Acinetobacter sp. strain ADP1. J Bacteriol 179, 5943–5948.
    [Google Scholar]
  10. D'Argenio, D. A., Segura, A., Coco, W. M., Bünz, P. V. & Ornston, L. N. ( 1999; ). The physiological contribution of Acinetobacter PcaK, a transport system that acts upon protocatechuate, can be masked by the overlapping specificity of VanK. J Bacteriol 181, 3505–3515.
    [Google Scholar]
  11. Groenewegen, P. E. J., Driessen, A. J. M., Konings, W. N. & de Bont, J. A. M. ( 1990; ). Energy-dependent uptake of 4-chlorobenzoate in the coryneform bacterium NTB-1. J Bacteriol 172, 419–423.
    [Google Scholar]
  12. Harwood, C. S. & Gibson, J. ( 1986; ). Uptake of benzoate by Rhodopseudomonas palustris grown anaerobically in light. J Bacteriol 165, 504–509.
    [Google Scholar]
  13. Harwood, C. S. & Parales, R. ( 1996; ). The β-ketoadipate pathway and the biology of self identity. Annu Rev Microbiol 50, 553–590.[CrossRef]
    [Google Scholar]
  14. Harwood, C. S., Nichols, N. N., Kim, M.-K., Ditty, J. L. & Parales, R. E. ( 1994; ). Identification of the pcaRKF gene cluster from Pseudomonas putida: involvement in chemotaxis, biodegradation, and transport of 4-hydroxybenzoate. J Bacteriol 176, 6479–6488.
    [Google Scholar]
  15. Higgins, S. J. & Mandelstam, J. ( 1972; ). Evidence for induced synthesis of an active transport factor for mandelate in Pseudomonas putida. Biochem J 126, 917–922.
    [Google Scholar]
  16. Kashket, E. R. ( 1985; ). The proton motive force in bacteria: a critical assessment of methods. Annu Rev Microbiol 39, 219–242.[CrossRef]
    [Google Scholar]
  17. Kovach, M. E., Elzer, P. H., Hill, D. S., Robertson, G. T., Farris, M. A., Roop, R. M., II & Peterson, K. M. ( 1995; ). Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene 166, 175–176.[CrossRef]
    [Google Scholar]
  18. Kröckel, L. & Focht, D. D. ( 1987; ). Construction of chlorobenzene-utilizing recombinants by progenitive manifestation of a rare event. Appl Environ Microbiol 53, 2470–2475.
    [Google Scholar]
  19. Leveau, J. H. L., Zehnder, A. J. B. & van der Meer, J. R. ( 1998; ). The tfdK gene product facilitates uptake of 2,4-dichlorophenoxyacetate by Ralstonia eutropha JMP134(pJP4). J Bacteriol 180, 2237–2243.
    [Google Scholar]
  20. Merkel, S. M., Eberhard, A. E., Gibson, J. & Harwood, C. S. ( 1989; ). Involvement of coenzyme A thioesters in anaerobic metabolism of 4-hydroxybenzoate by Rhodopseudomonas palustris. J Bacteriol 171, 1–7.
    [Google Scholar]
  21. Miguez, C. B., Greer, C. W., Ingram, J. M. & MacLeod, R. A. ( 1995; ). Uptake of benzoic acid and chloro-substituted benzoic acids by Alcaligenes denitrificans BRI3010 and BRI6011. Appl Environ Microbiol 61, 4152–4159.
    [Google Scholar]
  22. Nichols, N. N. & Harwood, C. S. ( 1997; ). PcaK, a high-affinity permease for the aromatic compounds 4-hydroxybenzoate and protocatechuate from Pseudomonas putida. J Bacteriol 179, 5056–5061.
    [Google Scholar]
  23. Parke, D. & Ornston, N. L. ( 2003; ). Hydroxycinnamate (hca) catabolic genes from Acinetobacter sp. strain ADP1 are repressed by HcaR and are induced by hydroxycinnamoyl-coenzyme A thioesters. Appl Environ Microbiol 69, 5398–5409.[CrossRef]
    [Google Scholar]
  24. Pérez-Pantoja, D., Guzmán, L., Manzano, M., Pieper, D. H. & González, B. ( 2000; ). Role of tfdCIDIEIFI and tfdDIICIIEIIFII gene modules in catabolism of 3-chlorobenzoate by Ralstonia eutropha JMP134(pJP4). Appl Environ Microbiol 66, 1602–1608.[CrossRef]
    [Google Scholar]
  25. Pérez-Pantoja, D., De la Iglesia, R., Pieper, D. H. & González, B. ( 2008; ). Metabolic reconstruction of aromatic compounds degradation from the genome of the amazing pollutant degrading bacterium Cupriavidus necator JMP134. FEMS Microbiol Rev 32, 736–794.[CrossRef]
    [Google Scholar]
  26. Plumeier, I., Pérez-Pantoja, D., Heim, S., González, B. & Pieper, D. H. ( 2002; ). The importance of different tfd genes during the degradation of chloroaromatics by Ralstonia eutropha JMP134. J Bacteriol 184, 4054–4064.[CrossRef]
    [Google Scholar]
  27. Prieto, M. A. & García, J. L. ( 1997; ). Identification of the 4-hydroxyphenylacetate transport gene of Escherichia coli W: construction of a highly sensitive cellular biosensor. FEBS Lett 414, 293–297.[CrossRef]
    [Google Scholar]
  28. Reineke, W. ( 1998; ). Development of hybrid strains for the mineralization of chloroaromatics by patchwork assembly. Annu Rev Microbiol 52, 287–331.[CrossRef]
    [Google Scholar]
  29. Saint, C. P. & Romas, P. ( 1996; ). 4-Methylphthalate catabolism in Burkholderia cepacia Pc701: a gene encoding a phthalate-specific permease forms part of a novel gene cluster. Microbiology 142, 2407–2418.[CrossRef]
    [Google Scholar]
  30. Schleissner, C., Olivera, E. R., Fernández-Valverde, M. & Luengo, J. M. ( 1994; ). Aerobic catabolism of phenylacetic acid in Pseudomonas putida U: biochemical characterization of a specific phenylacetic acid transport system and formal demonstration that phenylacetyl-coenzyme A is a catabolic intermediate. J Bacteriol 176, 7667–7676.
    [Google Scholar]
  31. Thayer, J. R. & Wheelis, M. L. ( 1982; ). Active transport of benzoate in Pseudomonas putida. J Gen Microbiol 128, 1749–1753.
    [Google Scholar]
  32. Trefault, N., De la Iglesia, R., Molina, A. M., Manzano, M., Ledger, T., Pérez-Pantoja, D., Sánchez, M. A., Stuardo, M. & González, B. ( 2004; ). Genetic organization of the catabolic plasmid pJP4 from Ralstonia eutropha JMP134(pJP4) reveals mechanisms of adaptation to chloroaromatic pollutants and evolution of specialized chloroaromatic degradation pathways. Environ Microbiol 6, 655–668.[CrossRef]
    [Google Scholar]
  33. Vandamme, P. & Coenye, T. ( 2004; ). Taxonomy of the genus Cupriavidus: a tale of lost and found. Int J Syst Evol Microbiol 54, 2285–2289.[CrossRef]
    [Google Scholar]
  34. Whitehead, D. C. ( 1964; ). Identification of p-hydroxybenzoic, vanillic, p-coumaric and ferulic acids in soils. Nature 202, 417–418.[CrossRef]
    [Google Scholar]
  35. Williams, P. A. & Shaw, L. E. ( 1997; ). mucK, a gene in Acinetobacter calcoaceticus ADP1 (BD413), encodes the ability to grow on exogenous cis,cis-muconate as the sole carbon source. J Bacteriol 179, 5935–5942.
    [Google Scholar]
  36. Wong, C. M., Dilworth, M. J. & Glenn, A. R. ( 1994; ). Cloning and sequencing show that 4-hydroxybenzoate hydroxylase (PobA) is required for uptake of 4-hydroxybenzoate in Rhizobium leguminosarum. Microbiology 140, 2775–2786.[CrossRef]
    [Google Scholar]
  37. Yuroff, A. S., Sabat, G. & Hickey, W. J. ( 2003; ). Transporter-mediated uptake of 2-chloro- and 2-hydroxybenzoate by Pseudomonas huttiensis strain D1. Appl Environ Microbiol 69, 7401–7408.[CrossRef]
    [Google Scholar]
  38. Zipper, C., Bunk, M., Zehnder, A. J. B. & Kohler, H.-P. E. ( 1998; ). Enantioselective uptake and degradation of the chiral herbicide dichlorprop [(RS)-2-(2,4-dichlorophenoxy)propanoic acid] by Sphingomonas herbicidovorans MH. J Bacteriol 180, 3368–3374.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.029207-0
Loading
/content/journal/micro/10.1099/mic.0.029207-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error