1887

Abstract

Isolated more than half a century ago, the H37Rv strain of still remains the strain of choice for the majority of laboratories conducting studies of TB pathogenesis. In this report we reveal that H37Rv is highly prone to losing the ability to synthesize the cell wall lipid phthiocerol dimycocerosate (PDIM) during extended periods of culture. In addition, H37Rv stocks that have been held for even a short length of time should be thought of as a heterogeneous population of PDIM-positive and PDIM-negative cell types. We demonstrate that after weekly subculture of PDIM-positive isolates over a period of 20 weeks, the proportion of PDIM-negative cells rises above 30 %. That PDIM biosynthesis is negatively selected is evident from the broad range of mutation types we observe within cultures originating from a single PDIM-positive parental clone. Moreover, the appearance of these multiple mutation types coupled with an enhanced growth rate of PDIM-negative bacteria ensures that ‘PDIM-less’ clones rapidly dominate cultures. It has been known for almost a decade that strains of that lack PDIM are severely attenuated during infection. Therefore, the loss of PDIM raises a very serious issue in regard to the interpretation of putative virulence factors where heterogeneous parental cultures are potentially being compared to recombinant clones isolated within a PDIM-negative background. It is essential that researchers undertaking virulence studies confirm the presence of PDIM within all recombinant clones and the parental strains they are derived from.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.029199-0
2009-11-01
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/11/3532.html?itemId=/content/journal/micro/10.1099/mic.0.029199-0&mimeType=html&fmt=ahah

References

  1. Andreu N., Gibert I. 2008; Cell population heterogeneity in Mycobacterium tuberculosis H37Rv. Tuberculosis (Edinb 88:553–559
    [Google Scholar]
  2. Applied Biosystems 2005 Real-Time PCR Systems: Chemistry Guide, Part Number 4348358 Rev, E edn. Foster City, CA: Applied Biosystems;
    [Google Scholar]
  3. Astarie-Dequeker C., Le Guyader L., Malaga W., Seaphanh F. K., Chalut C., Lopez A., Guilhot C. 2009; Phthiocerol dimycocerosates of M. tuberculosis participate in macrophage invasion by inducing changes in the organization of plasma membrane lipids. PLoS Pathog 5:e1000289
    [Google Scholar]
  4. Azad A. K., Sirakova T. D., Rogers L. M., Kolattukudy P. E. 1996; Targeted replacement of the mycocerosic acid synthase gene in Mycobacterium bovis BCG produces a mutant that lacks mycosides. Proc Natl Acad Sci U S A 93:4787–4792
    [Google Scholar]
  5. Azad A. K., Sirakova T. D., Fernandes N. D., Kolattukudy P. E. 1997; Gene knockout reveals a novel gene cluster for the synthesis of a class of cell wall lipids unique to pathogenic mycobacteria. J Biol Chem 272:16741–16745
    [Google Scholar]
  6. Camacho L. R., Ensergueix D., Perez E., Gicquel B., Guilhot C. 1999; Identification of a virulence gene cluster of Mycobacterium tuberculosis by signature-tagged transposon mutagenesis. Mol Microbiol 34:257–267
    [Google Scholar]
  7. Camacho L. R., Constant P., Raynaud C., Laneelle M. A., Triccas J. A., Gicquel B., Daffé M., Guilhot C. 2001; Analysis of the phthiocerol dimycocerosate locus of Mycobacterium tuberculosis. Evidence that this lipid is involved in the cell wall permeability barrier. J Biol Chem 276:19845–19854
    [Google Scholar]
  8. Cardona P. J., Soto C. Y., Martin C., Giquel B., Agusti G., Andreu N., Guirado E., Sirakova T., Kolattukudy P. other authors 2006; Neutral-red reaction is related to virulence and cell wall methyl-branched lipids in Mycobacterium tuberculosis . Microbes Infect 8:183–190
    [Google Scholar]
  9. Cole S. T., Brosch R., Parkhill J., Garnier T., Churcher C., Harris D., Gordon S. V., Eiglmeier K., Gas S. other authors 1998; Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393:537–544
    [Google Scholar]
  10. Cox J. S., Chen B., McNeil M., Jacobs W. R. Jr 1999; Complex lipid determines tissue-specific replication of Mycobacterium tuberculosis in mice. Nature 402:79–83
    [Google Scholar]
  11. Domenech P., Reed M. B., Dowd C. S., Manca C., Kaplan G., Barry C. E. III 2004; The role of MmpL8 in sulfatide biogenesis and virulence of Mycobacterium tuberculosis . J Biol Chem 279:21257–21265
    [Google Scholar]
  12. Domenech P., Reed M. B., Barry C. E. III 2005; Contribution of the Mycobacterium tuberculosis MmpL protein family to virulence and drug resistance. Infect Immun 73:3492–3501
    [Google Scholar]
  13. Dubey V. S., Sirakova T. D., Kolattukudy P. E. 2002; Disruption of msl3 abolishes the synthesis of mycolipanoic and mycolipenic acids required for polyacyltrehalose synthesis in Mycobacterium tuberculosis H37Rv and causes cell aggregation. Mol Microbiol 45:1451–1459
    [Google Scholar]
  14. Dye C. 2006; Global epidemiology of tuberculosis. Lancet 367:938–940
    [Google Scholar]
  15. Edgar R., Domrachev M., Lash A. E. 2002; Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res 30:207–210
    [Google Scholar]
  16. Etienne G., Laval F., Villeneuve C., Dinadayala P., Abouwarda A., Zerbib D., Galamba A., Daffé M. 2005; The cell envelope structure and properties of Mycobacterium smegmatis mc2155: is there a clue for the unique transformability of the strain?. Microbiology 151:2075–2086
    [Google Scholar]
  17. Gagneux S., Small P. M. 2007; Global phylogeography of Mycobacterium tuberculosis and implications for tuberculosis product development. Lancet Infect Dis 7:328–337
    [Google Scholar]
  18. Goren M. B., Brokl O., Schaefer W. B. 1974; Lipids of putative relevance to virulence in Mycobacterium tuberculosis: phthiocerol dimycocerosate and the attenuation indicator lipid. Infect Immun 9:150–158
    [Google Scholar]
  19. Kana B. D., Gordhan B. G., Downing K. J., Sung N., Vostroktunova G., Machowski E. E., Tsenova L., Young M., Kaprelyants A. other authors 2008; The resuscitation-promoting factors of Mycobacterium tuberculosis are required for virulence and resuscitation from dormancy but are collectively dispensable for growth in vitro. Mol Microbiol 67:672–684
    [Google Scholar]
  20. Manca C., Tsenova L., Barry C. E. III, Bergtold A., Freeman S., Haslett P. A., Musser J. M., Freedman V. H., Kaplan G. 1999; Mycobacterium tuberculosis CDC1551 induces a more vigorous host response in vivo and in vitro, but is not more virulent than other clinical isolates. J Immunol 162:6740–6746
    [Google Scholar]
  21. Manjunatha U. H., Boshoff H., Dowd C. S., Zhang L., Albert T. J., Norton J. E., Daniels L., Dick T., Pang S. S. other authors 2006; Identification of a nitroimidazo-oxazine-specific protein involved in PA-824 resistance in Mycobacterium tuberculosis . Proc Natl Acad Sci U S A 103:431–436
    [Google Scholar]
  22. Matsunaga I., Bhatt A., Young D. C., Cheng T. Y., Eyles S. J., Besra G. S., Briken V., Porcelli S. A., Costello C. E. other authors 2004; Mycobacterium tuberculosis pks12 produces a novel polyketide presented by CD1c to T cells. J Exp Med 200:1559–1569
    [Google Scholar]
  23. Mazurkiewicz P., Tang C. M., Boone C., Holden D. W. 2006; Signature-tagged mutagenesis: barcoding mutants for genome-wide screens. Nat Rev Genet 7:929–939
    [Google Scholar]
  24. Mostowy S., Cleto C., Sherman D. R., Behr M. A. 2004; The Mycobacterium tuberculosis complex transcriptome of attenuation. Tuberculosis (Edinb 84:197–204
    [Google Scholar]
  25. Murphy D. J., Brown J. R. 2007; Identification of gene targets against dormant phase Mycobacterium tuberculosis infections. BMC Infect Dis 7:84
    [Google Scholar]
  26. Onwueme K. C., Vos C. J., Zurita J., Ferreras J. A., Quadri L. E. 2005; The dimycocerosate ester polyketide virulence factors of mycobacteria. Prog Lipid Res 44:259–302
    [Google Scholar]
  27. Pelicic V., Jackson M., Reyrat J. M., Jacobs W. R. Jr, Gicquel B., Guilhot C. 1997; Efficient allelic exchange and transposon mutagenesis in Mycobacterium tuberculosis . Proc Natl Acad Sci U S A 94:10955–10960
    [Google Scholar]
  28. Reed M. B., Domenech P., Manca C., Su H., Barczak A. K., Kreiswirth B. N., Kaplan G., Barry C. E. III 2004; A glycolipid of hypervirulent tuberculosis strains that inhibits the innate immune response. Nature 431:84–87
    [Google Scholar]
  29. Rengarajan J., Bloom B. R., Rubin E. J. 2005; Genome-wide requirements for Mycobacterium tuberculosis adaptation and survival in macrophages. Proc Natl Acad Sci U S A 102:8327–8332
    [Google Scholar]
  30. Rousseau C., Winter N., Pivert E., Bordat Y., Neyrolles O., Ave P., Huerre M., Gicquel B., Jackson M. 2004; Production of phthiocerol dimycocerosates protects Mycobacterium tuberculosis from the cidal activity of reactive nitrogen intermediates produced by macrophages and modulates the early immune response to infection. Cell Microbiol 6:277–287
    [Google Scholar]
  31. Sassetti C. M., Rubin E. J. 2003; Genetic requirements for mycobacterial survival during infection. Proc Natl Acad Sci U S A 100:12989–12994
    [Google Scholar]
  32. Sassetti C. M., Boyd D. H., Rubin E. J. 2003; Genes required for mycobacterial growth defined by high density mutagenesis. Mol Microbiol 48:77–84
    [Google Scholar]
  33. Saxena P., Yadav G., Mohanty D., Gokhale R. S. 2003; A new family of type III polyketide synthases in Mycobacterium tuberculosis . J Biol Chem 278:44780–44790
    [Google Scholar]
  34. Sherman D. R., Voskuil M., Schnappinger D., Liao R., Harrell M. I., Schoolnik G. K. 2001; Regulation of the Mycobacterium tuberculosis hypoxic response gene encoding alpha-crystallin. Proc Natl Acad Sci U S A 98:7534–7539
    [Google Scholar]
  35. Sirakova T. D., Dubey V. S., Kim H. J., Cynamon M. H., Kolattukudy P. E. 2003; The largest open reading frame ( pks12) in the Mycobacterium tuberculosis genome is involved in pathogenesis and dimycocerosyl phthiocerol synthesis. Infect Immun 71:3794–3801
    [Google Scholar]
  36. Slayden R. A., Barry C. E. III 2001; Analysis of the lipids of Mycobacterium tuberculosis . In Mycobacterium Tuberculosis Protocols pp 229–245 Edited by Parish T., Stoker N. G. Totowa, NJ: Humana Press;
    [Google Scholar]
  37. Snapper S. B., Melton R. E., Mustafa S., Kieser T., Jacobs W. R. Jr 1990; Isolation and characterization of efficient plasmid transformation mutants of Mycobacterium smegmatis . Mol Microbiol 4:1911–1919
    [Google Scholar]
  38. Sreevatsan S., Pan X., Stockbauer K. E., Connell N. D., Kreiswirth B. N., Whittam T. S., Musser J. M. 1997; Restricted structural gene polymorphism in the Mycobacterium tuberculosis complex indicates evolutionarily recent global dissemination. Proc Natl Acad Sci U S A 94:9869–9874
    [Google Scholar]
  39. Steenken W. Jr 1950; Dissociation of the tubercle bacillus; a review. Am Rev Tuberc 62:22–33
    [Google Scholar]
  40. Steenken W. Jr, Oatway W. H. Jr, Petroff S. A. 1934; Biological studies of the tubercle bacillus: iii. Dissociation and pathogenicity of the r and s variants of the human tubercle bacillus (H37. J Exp Med 60:515–540
    [Google Scholar]
  41. Stover C. K., de la Cruz V. F., Fuerst T. R., Burlein J. E., Benson L. A., Bennett L. T., Bansal G. P., Young J. F., Lee M. H. other authors 1991; New use of BCG for recombinant vaccines. Nature 351:456–460
    [Google Scholar]
  42. Trivedi O. A., Arora P., Vats A., Ansari M. Z., Tickoo R., Sridharan V., Mohanty D., Gokhale R. S. 2005; Dissecting the mechanism and assembly of a complex virulence mycobacterial lipid. Mol Cell 17:631–643
    [Google Scholar]
  43. Waddell S. J., Chung G. A., Gibson K. J., Everett M. J., Minnikin D. E., Besra G. S., Butcher P. D. 2005; Inactivation of polyketide synthase and related genes results in the loss of complex lipids in Mycobacterium tuberculosis H37Rv. Lett Appl Microbiol 40:201–206
    [Google Scholar]
  44. World Health Organization 2006 Global Tuberculosis Control – Surveillance, Planning, Financing. WHO Report 2006 Geneva, Switzerland: World Health Organization;
    [Google Scholar]
  45. Yu J., Othman M. I., Farjo R., Zareparsi S., MacNee S. P., Yoshida S., Swaroop A. 2002; Evaluation and optimization of procedures for target labeling and hybridization of cDNA microarrays. Mol Vis 8:130–137
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.029199-0
Loading
/content/journal/micro/10.1099/mic.0.029199-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error