1887

Abstract

Isolated more than half a century ago, the H37Rv strain of still remains the strain of choice for the majority of laboratories conducting studies of TB pathogenesis. In this report we reveal that H37Rv is highly prone to losing the ability to synthesize the cell wall lipid phthiocerol dimycocerosate (PDIM) during extended periods of culture. In addition, H37Rv stocks that have been held for even a short length of time should be thought of as a heterogeneous population of PDIM-positive and PDIM-negative cell types. We demonstrate that after weekly subculture of PDIM-positive isolates over a period of 20 weeks, the proportion of PDIM-negative cells rises above 30 %. That PDIM biosynthesis is negatively selected is evident from the broad range of mutation types we observe within cultures originating from a single PDIM-positive parental clone. Moreover, the appearance of these multiple mutation types coupled with an enhanced growth rate of PDIM-negative bacteria ensures that ‘PDIM-less’ clones rapidly dominate cultures. It has been known for almost a decade that strains of that lack PDIM are severely attenuated during infection. Therefore, the loss of PDIM raises a very serious issue in regard to the interpretation of putative virulence factors where heterogeneous parental cultures are potentially being compared to recombinant clones isolated within a PDIM-negative background. It is essential that researchers undertaking virulence studies confirm the presence of PDIM within all recombinant clones and the parental strains they are derived from.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.029199-0
2009-11-01
2020-05-26
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/11/3532.html?itemId=/content/journal/micro/10.1099/mic.0.029199-0&mimeType=html&fmt=ahah

References

  1. Andreu N., Gibert I.. 2008; Cell population heterogeneity in Mycobacterium tuberculosis H37Rv. Tuberculosis (Edinb88:553–559
    [Google Scholar]
  2. Applied Biosystems 2005; Real-Time PCR Systems: Chemistry Guide, Part Number 4348358 Rev, E edn. Foster City, CA: Applied Biosystems;
    [Google Scholar]
  3. Astarie-Dequeker C., Le Guyader L., Malaga W., Seaphanh F. K., Chalut C., Lopez A., Guilhot C.. 2009; Phthiocerol dimycocerosates of M. tuberculosis participate in macrophage invasion by inducing changes in the organization of plasma membrane lipids. PLoS Pathog5:e1000289
    [Google Scholar]
  4. Azad A. K., Sirakova T. D., Rogers L. M., Kolattukudy P. E.. 1996; Targeted replacement of the mycocerosic acid synthase gene in Mycobacterium bovis BCG produces a mutant that lacks mycosides. Proc Natl Acad Sci U S A93:4787–4792
    [Google Scholar]
  5. Azad A. K., Sirakova T. D., Fernandes N. D., Kolattukudy P. E.. 1997; Gene knockout reveals a novel gene cluster for the synthesis of a class of cell wall lipids unique to pathogenic mycobacteria. J Biol Chem272:16741–16745
    [Google Scholar]
  6. Camacho L. R., Ensergueix D., Perez E., Gicquel B., Guilhot C.. 1999; Identification of a virulence gene cluster of Mycobacterium tuberculosis by signature-tagged transposon mutagenesis. Mol Microbiol34:257–267
    [Google Scholar]
  7. Camacho L. R., Constant P., Raynaud C., Laneelle M. A., Triccas J. A., Gicquel B., Daffé M., Guilhot C.. 2001; Analysis of the phthiocerol dimycocerosate locus of Mycobacterium tuberculosis. Evidence that this lipid is involved in the cell wall permeability barrier. J Biol Chem276:19845–19854
    [Google Scholar]
  8. Cardona P. J., Soto C. Y., Martin C., Giquel B., Agusti G., Andreu N., Guirado E., Sirakova T., Kolattukudy P.. other authors 2006; Neutral-red reaction is related to virulence and cell wall methyl-branched lipids in Mycobacterium tuberculosis. Microbes Infect8:183–190
    [Google Scholar]
  9. Cole S. T., Brosch R., Parkhill J., Garnier T., Churcher C., Harris D., Gordon S. V., Eiglmeier K., Gas S.. other authors 1998; Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature393:537–544
    [Google Scholar]
  10. Cox J. S., Chen B., McNeil M., Jacobs W. R. Jr. 1999; Complex lipid determines tissue-specific replication of Mycobacterium tuberculosis in mice. Nature402:79–83
    [Google Scholar]
  11. Domenech P., Reed M. B., Dowd C. S., Manca C., Kaplan G., Barry C. E. III. 2004; The role of MmpL8 in sulfatide biogenesis and virulence of Mycobacterium tuberculosis. J Biol Chem279:21257–21265
    [Google Scholar]
  12. Domenech P., Reed M. B., Barry C. E. III. 2005; Contribution of the Mycobacterium tuberculosis MmpL protein family to virulence and drug resistance. Infect Immun73:3492–3501
    [Google Scholar]
  13. Dubey V. S., Sirakova T. D., Kolattukudy P. E.. 2002; Disruption of msl3 abolishes the synthesis of mycolipanoic and mycolipenic acids required for polyacyltrehalose synthesis in Mycobacterium tuberculosis H37Rv and causes cell aggregation. Mol Microbiol45:1451–1459
    [Google Scholar]
  14. Dye C.. 2006; Global epidemiology of tuberculosis. Lancet367:938–940
    [Google Scholar]
  15. Edgar R., Domrachev M., Lash A. E.. 2002; Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res30:207–210
    [Google Scholar]
  16. Etienne G., Laval F., Villeneuve C., Dinadayala P., Abouwarda A., Zerbib D., Galamba A., Daffé M.. 2005; The cell envelope structure and properties of Mycobacterium smegmatis mc2155: is there a clue for the unique transformability of the strain?. Microbiology151:2075–2086
    [Google Scholar]
  17. Gagneux S., Small P. M.. 2007; Global phylogeography of Mycobacterium tuberculosis and implications for tuberculosis product development. Lancet Infect Dis7:328–337
    [Google Scholar]
  18. Goren M. B., Brokl O., Schaefer W. B.. 1974; Lipids of putative relevance to virulence in Mycobacterium tuberculosis: phthiocerol dimycocerosate and the attenuation indicator lipid. Infect Immun9:150–158
    [Google Scholar]
  19. Kana B. D., Gordhan B. G., Downing K. J., Sung N., Vostroktunova G., Machowski E. E., Tsenova L., Young M., Kaprelyants A.. other authors 2008; The resuscitation-promoting factors of Mycobacterium tuberculosis are required for virulence and resuscitation from dormancy but are collectively dispensable for growth in vitro. Mol Microbiol67:672–684
    [Google Scholar]
  20. Manca C., Tsenova L., Barry C. E. III, Bergtold A., Freeman S., Haslett P. A., Musser J. M., Freedman V. H., Kaplan G.. 1999; Mycobacterium tuberculosis CDC1551 induces a more vigorous host response in vivo and in vitro, but is not more virulent than other clinical isolates. J Immunol162:6740–6746
    [Google Scholar]
  21. Manjunatha U. H., Boshoff H., Dowd C. S., Zhang L., Albert T. J., Norton J. E., Daniels L., Dick T., Pang S. S.. other authors 2006; Identification of a nitroimidazo-oxazine-specific protein involved in PA-824 resistance in Mycobacterium tuberculosis. Proc Natl Acad Sci U S A103:431–436
    [Google Scholar]
  22. Matsunaga I., Bhatt A., Young D. C., Cheng T. Y., Eyles S. J., Besra G. S., Briken V., Porcelli S. A., Costello C. E.. other authors 2004; Mycobacterium tuberculosis pks12 produces a novel polyketide presented by CD1c to T cells. J Exp Med200:1559–1569
    [Google Scholar]
  23. Mazurkiewicz P., Tang C. M., Boone C., Holden D. W.. 2006; Signature-tagged mutagenesis: barcoding mutants for genome-wide screens. Nat Rev Genet7:929–939
    [Google Scholar]
  24. Mostowy S., Cleto C., Sherman D. R., Behr M. A.. 2004; The Mycobacterium tuberculosis complex transcriptome of attenuation. Tuberculosis (Edinb84:197–204
    [Google Scholar]
  25. Murphy D. J., Brown J. R.. 2007; Identification of gene targets against dormant phase Mycobacterium tuberculosis infections. BMC Infect Dis7:84
    [Google Scholar]
  26. Onwueme K. C., Vos C. J., Zurita J., Ferreras J. A., Quadri L. E.. 2005; The dimycocerosate ester polyketide virulence factors of mycobacteria. Prog Lipid Res44:259–302
    [Google Scholar]
  27. Pelicic V., Jackson M., Reyrat J. M., Jacobs W. R. Jr, Gicquel B., Guilhot C.. 1997; Efficient allelic exchange and transposon mutagenesis in Mycobacterium tuberculosis. Proc Natl Acad Sci U S A94:10955–10960
    [Google Scholar]
  28. Reed M. B., Domenech P., Manca C., Su H., Barczak A. K., Kreiswirth B. N., Kaplan G., Barry C. E. III. 2004; A glycolipid of hypervirulent tuberculosis strains that inhibits the innate immune response. Nature431:84–87
    [Google Scholar]
  29. Rengarajan J., Bloom B. R., Rubin E. J.. 2005; Genome-wide requirements for Mycobacterium tuberculosis adaptation and survival in macrophages. Proc Natl Acad Sci U S A102:8327–8332
    [Google Scholar]
  30. Rousseau C., Winter N., Pivert E., Bordat Y., Neyrolles O., Ave P., Huerre M., Gicquel B., Jackson M.. 2004; Production of phthiocerol dimycocerosates protects Mycobacterium tuberculosis from the cidal activity of reactive nitrogen intermediates produced by macrophages and modulates the early immune response to infection. Cell Microbiol6:277–287
    [Google Scholar]
  31. Sassetti C. M., Rubin E. J.. 2003; Genetic requirements for mycobacterial survival during infection. Proc Natl Acad Sci U S A100:12989–12994
    [Google Scholar]
  32. Sassetti C. M., Boyd D. H., Rubin E. J.. 2003; Genes required for mycobacterial growth defined by high density mutagenesis. Mol Microbiol48:77–84
    [Google Scholar]
  33. Saxena P., Yadav G., Mohanty D., Gokhale R. S.. 2003; A new family of type III polyketide synthases in Mycobacterium tuberculosis. J Biol Chem278:44780–44790
    [Google Scholar]
  34. Sherman D. R., Voskuil M., Schnappinger D., Liao R., Harrell M. I., Schoolnik G. K.. 2001; Regulation of the Mycobacterium tuberculosis hypoxic response gene encoding alpha-crystallin. Proc Natl Acad Sci U S A98:7534–7539
    [Google Scholar]
  35. Sirakova T. D., Dubey V. S., Kim H. J., Cynamon M. H., Kolattukudy P. E.. 2003; The largest open reading frame ( pks12) in the Mycobacterium tuberculosis genome is involved in pathogenesis and dimycocerosyl phthiocerol synthesis. Infect Immun71:3794–3801
    [Google Scholar]
  36. Slayden R. A., Barry C. E. III. 2001; Analysis of the lipids of Mycobacterium tuberculosis. In Mycobacterium Tuberculosis Protocols pp229–245 Edited by Parish T., Stoker N. G. Totowa, NJ: Humana Press;
    [Google Scholar]
  37. Snapper S. B., Melton R. E., Mustafa S., Kieser T., Jacobs W. R. Jr. 1990; Isolation and characterization of efficient plasmid transformation mutants of Mycobacterium smegmatis. Mol Microbiol4:1911–1919
    [Google Scholar]
  38. Sreevatsan S., Pan X., Stockbauer K. E., Connell N. D., Kreiswirth B. N., Whittam T. S., Musser J. M.. 1997; Restricted structural gene polymorphism in the Mycobacterium tuberculosis complex indicates evolutionarily recent global dissemination. Proc Natl Acad Sci U S A94:9869–9874
    [Google Scholar]
  39. Steenken W. Jr. 1950; Dissociation of the tubercle bacillus; a review. Am Rev Tuberc62:22–33
    [Google Scholar]
  40. Steenken W. Jr, Oatway W. H. Jr, Petroff S. A.. 1934; Biological studies of the tubercle bacillus: iii. Dissociation and pathogenicity of the r and s variants of the human tubercle bacillus (H37. J Exp Med60:515–540
    [Google Scholar]
  41. Stover C. K., de la Cruz V. F., Fuerst T. R., Burlein J. E., Benson L. A., Bennett L. T., Bansal G. P., Young J. F., Lee M. H.. other authors 1991; New use of BCG for recombinant vaccines. Nature351:456–460
    [Google Scholar]
  42. Trivedi O. A., Arora P., Vats A., Ansari M. Z., Tickoo R., Sridharan V., Mohanty D., Gokhale R. S.. 2005; Dissecting the mechanism and assembly of a complex virulence mycobacterial lipid. Mol Cell17:631–643
    [Google Scholar]
  43. Waddell S. J., Chung G. A., Gibson K. J., Everett M. J., Minnikin D. E., Besra G. S., Butcher P. D.. 2005; Inactivation of polyketide synthase and related genes results in the loss of complex lipids in Mycobacterium tuberculosis H37Rv. Lett Appl Microbiol40:201–206
    [Google Scholar]
  44. World Health Organization 2006; Global Tuberculosis Control – Surveillance, Planning, Financing. WHO Report 2006 Geneva, Switzerland: World Health Organization;
    [Google Scholar]
  45. Yu J., Othman M. I., Farjo R., Zareparsi S., MacNee S. P., Yoshida S., Swaroop A.. 2002; Evaluation and optimization of procedures for target labeling and hybridization of cDNA microarrays. Mol Vis8:130–137
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.029199-0
Loading
/content/journal/micro/10.1099/mic.0.029199-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error