1887

Abstract

activates protease-activated receptors (PARs) on oral keratinocytes, resulting in downstream signalling for an innate immune response. Activation depends on gingipains, but could be confounded by lipopolysaccharide signalling through Toll-like receptors. We therefore hypothesized that cleaves oral keratinocyte PARs in an Arg- (Rgp) or Lys- (Kgp) gingipain-specific manner to upregulate pro-inflammatory cytokines. Immortalized human oral keratinocytes (TERT-2) were incubated with wild-type (ATCC 33277) or strains from a panel of isogenic gingipain deletion mutants: Kgp-deficient (KDP 129); Rgp-deficient (KDP 133); or Kgp- and Rgp-deficient (KDP 136). After incubation with , keratinocytes were probed with specific antibodies against the N-terminus of PAR-1 and PAR-2. Using flow cytometry and immunofluorescence, receptor cleavage was marked by loss of specific antibody binding to the respective PARs. TERT-2 cells constitutively expressed high levels of PAR-1 and PAR-2, and lower levels of PAR-3. ATCC 33277 cleaved PAR-1 and PAR-2 in a dose-dependent manner, while the receptors were unaffected by the protease-negative double mutant (KDP 136) at all m.o.i. tested. The single Kgp-negative mutant preferentially cleaved PAR-1, whereas the Rgp-negative mutant cleaved PAR-2. Wild-type or Kgp-negative mutant cleavage of PAR-1 upregulated expression of IL-1, IL-1, IL-6 and TNF-; the Rgp-negative mutant did not modulate these cytokines. Selective cleavage of PAR-1 on oral epithelial cells by Rgp therefore upregulates expression of pro-inflammatory cytokines.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.029132-0
2009-10-01
2021-07-26
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/10/3238.html?itemId=/content/journal/micro/10.1099/mic.0.029132-0&mimeType=html&fmt=ahah

References

  1. Chen T., Nakayama K., Belliveau L., Duncan M. J. 2001; Porphyromonas gingivalis gingipains and adhesion to epithelial cells. Infect Immun 69:3048–3056
    [Google Scholar]
  2. Chen Y. F., Yan J., Zhang D. Y., Chen L. L. 2008; Effect of Porphyromonas gingivalis lipopolysaccharide on induced secretion of inflammatory cytokines by different cell lines. Zhejiang Da Xue Xue Bao Yi Xue Ban 37:622–628
    [Google Scholar]
  3. Coughlin S. R. 2000; Thrombin signalling and protease-activated receptors. Nature 407:258–264
    [Google Scholar]
  4. Dickson M. A., Hahn W. C., Ino Y., Ronfard V., Wu J. Y., Weinberg R. A., Louis D. N., Li F. P., Rheinwald J. G. 2000; Human keratinocytes that express hTERT and also bypass a p16(INK4a)-enforced mechanism that limits life span become immortal yet retain normal growth and differentiation characteristics. Mol Cell Biol 20:1436–1447
    [Google Scholar]
  5. Diya Z., Lili C., Shenglai L., Zhiyuan G., Jie Y. 2008; Lipopolysaccharide (LPS) of Porphyromonas gingivalis induces IL-1beta, TNF-alpha and IL-6 production by THP-1 cells in a way different from that of Escherichia coli LPS. Innate Immun 14:99–107
    [Google Scholar]
  6. Eick S., Reissmann A., Rodel J., Schmidt K. H., Pfister W. 2006; Porphyromonas gingivalis survives within KB cells and modulates inflammatory response. Oral Microbiol Immunol 21:231–237
    [Google Scholar]
  7. Eskan M. A., Rose B. G., Benakanakere M. R., Zeng Q., Fujioka D., Martin M. H., Lee M. J., Kinane D. F. 2008; TLR4 and S1P receptors cooperate to enhance inflammatory cytokine production in human gingival epithelial cells. Eur J Immunol 38:1138–1147
    [Google Scholar]
  8. Giacaman R. A., Nobbs A. H., Ross K. F., Herzberg M. C. 2007; Porphyromonas gingivalis selectively up-regulates the HIV-1 coreceptor CCR5 in oral keratinocytes. J Immunol 179:2542–2550
    [Google Scholar]
  9. Hansen K. K., Saifeddine M., Hollenberg M. D. 2004; Tethered ligand-derived peptides of proteinase-activated receptor 3 (PAR3) activate PAR1 and PAR2 in Jurkat T cells. Immunology 112:183–190
    [Google Scholar]
  10. Holzhausen M., Spolidorio L. C., Vergnolle N. 2005; Role of protease-activated receptor-2 in inflammation, and its possible implications as a putative mediator of periodontitis. Mem Inst Oswaldo Cruz 100:Suppl 1177–180
    [Google Scholar]
  11. Holzhausen M., Spolidorio L. C., Ellen R. P., Jobin M. C., Steinhoff M., Andrade-Gordon P., Vergnolle N. 2006; Protease-activated receptor-2 activation: a major role in the pathogenesis of Porphyromonas gingivalis infection. Am J Pathol 168:1189–1199
    [Google Scholar]
  12. Kadowaki T., Yamamoto K. 2003; Suppression of virulence of Porphyromonas gingivalis by potent inhibitors specific for gingipains. Curr Protein Pept Sci 4:451–458
    [Google Scholar]
  13. Kadowaki T., Yoneda M., Okamoto K., Maeda K., Yamamoto K. 1994; Purification and characterization of a novel arginine-specific cysteine proteinase (argingipain) involved in the pathogenesis of periodontal disease from the culture supernatant of Porphyromonas gingivalis . J Biol Chem 269:21371–21378
    [Google Scholar]
  14. Kadowaki T., Nakayama K., Yoshimura F., Okamoto K., Abe N., Yamamoto K. 1998; Arg-gingipain acts as a major processing enzyme for various cell surface proteins in Porphyromonas gingivalis . J Biol Chem 273:29072–29076
    [Google Scholar]
  15. Kadowaki T., Takii R., Baba A., Yamamoto K. 2003; Gingipains as the determinants of periodontopathogenicity. Nippon Yakurigaku Zasshi 122:37–44
    [Google Scholar]
  16. Kadowaki T., Baba A., Abe N., Takii R., Hashimoto M., Tsukuba T., Okazaki S., Suda Y., Asao T., Yamamoto K. 2004; Suppression of pathogenicity of Porphyromonas gingivalis by newly developed gingipain inhibitors. Mol Pharmacol 66:1599–1606
    [Google Scholar]
  17. Livak K. J., Schmittgen T. D. 2001; Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25:402–408
    [Google Scholar]
  18. Lourbakos A., Chinni C., Thompson P., Potempa J., Travis J., Mackie E. J., Pike R. N. 1998; Cleavage and activation of proteinase-activated receptor-2 on human neutrophils by gingipain-R from Porphyromonas gingivalis . FEBS Lett 435:45–48
    [Google Scholar]
  19. Lourbakos A., Potempa J., Travis J., D'Andrea M. R., Andrade-Gordon P., Santulli R., Mackie E. J., Pike R. N. 2001a; Arginine-specific protease from Porphyromonas gingivalis activates protease-activated receptors on human oral epithelial cells and induces interleukin-6 secretion. Infect Immun 69:5121–5130
    [Google Scholar]
  20. Lourbakos A., Yuan Y. P., Jenkins A. L., Travis J., Andrade-Gordon P., Santulli R., Potempa J., Pike R. N. 2001b; Activation of protease-activated receptors by gingipains from Porphyromonas gingivalis leads to platelet aggregation: a new trait in microbial pathogenicity. Blood 97:3790–3797
    [Google Scholar]
  21. Madianos P. N., Papapanou P. N., Nannmark U., Dahlen G., Sandros J. 1996; Porphyromonas gingivalis FDC381 multiplies and persists within human oral epithelial cells in vitro. Infect Immun 64:660–664
    [Google Scholar]
  22. Miura M., Hamachi T., Fujise O., Maeda K. 2005; The prevalence and pathogenic differences of Porphyromonas gingivalis fimA genotypes in patients with aggressive periodontitis. J Periodontal Res 40:147–152
    [Google Scholar]
  23. Nagatomo Y., Yoshikawa T., Kohno T., Yoshizawa A., Anzai T., Meguro T., Satoh T., Ogawa S. 2007; Effects of beta-blocker therapy on high sensitivity c-reactive protein, oxidative stress, and cardiac function in patients with congestive heart failure. J Card Fail 13:365–371
    [Google Scholar]
  24. Nakayama K., Kadowaki T., Okamoto K., Yamamoto K. 1995; Construction and characterization of arginine-specific cysteine proteinase (Arg-gingipain)-deficient mutants of Porphyromonas gingivalis. Evidence for significant contribution of Arg-gingipain to virulence. J Biol Chem 270:23619–23626
    [Google Scholar]
  25. Nisapakultorn K., Ross K. F., Herzberg M. C. 2001; Calprotectin expression in vitro by oral epithelial cells confers resistance to infection by Porphyromonas gingivalis . Infect Immun 69:4242–4247
    [Google Scholar]
  26. Nonnenmacher C., Dalpke A., Mutters R., Heeg K. 2004; Quantitative detection of periodontopathogens by real-time PCR. J Microbiol Methods 59:117–125
    [Google Scholar]
  27. Nonnenmacher C., Dalpke A., Rochon J., Flores-de-Jacoby L., Mutters R., Heeg K. 2005; Real-time polymerase chain reaction for detection and quantification of bacteria in periodontal patients. J Periodontol 76:1542–1549
    [Google Scholar]
  28. O'Brien P. J., Prevost N., Molino M., Hollinger M. K., Woolkalis M. J., Woulfe D. S., Brass L. F. 2000; Thrombin responses in human endothelial cells. Contributions from receptors other than PAR1 include the transactivation of PAR2 by thrombin-cleaved PAR1. J Biol Chem 275:13502–13509
    [Google Scholar]
  29. Oido-Mori M., Rezzonico R., Wang P. L., Kowashi Y., Dayer J. M., Baehni P. C., Chizzolini C. 2001; Porphyromonas gingivalis gingipain-R enhances interleukin-8 but decreases gamma interferon-inducible protein 10 production by human gingival fibroblasts in response to T-cell contact. Infect Immun 69:4493–4501
    [Google Scholar]
  30. Okamoto K., Nakayama K., Kadowaki T., Abe N., Ratnayake D. B., Yamamoto K. 1998; Involvement of a lysine-specific cysteine proteinase in hemoglobin adsorption and heme accumulation by Porphyromonas gingivalis . J Biol Chem 273:21225–21231
    [Google Scholar]
  31. Ossovskaya V. S., Bunnett N. W. 2004; Protease-activated receptors: contribution to physiology and disease. Physiol Rev 84:579–621
    [Google Scholar]
  32. Pathirana R. D., O'Brien-Simpson N. M., Brammar G. C., Slakeski N., Reynolds E. C. 2007a; Kgp and RgpB, but not RgpA, are important for Porphyromonas gingivalis virulence in the murine periodontitis model. Infect Immun 75:1436–1442
    [Google Scholar]
  33. Pathirana R. D., O'Brien-Simpson N. M., Visvanathan K., Hamilton J. A., Reynolds E. C. 2007b; Flow cytometric analysis of adherence of Porphyromonas gingivalis to oral epithelial cells. Infect Immun 75:2484–2492
    [Google Scholar]
  34. Potempa J., Pike R. 2009; Corruption of innate immunity by bacterial proteases. J Innate Immun 1:70–87
    [Google Scholar]
  35. Potempa J., Banbula A., Travis J. 2000; Role of bacterial proteinases in matrix destruction and modulation of host responses. Periodontol 2000; 24:153–192
    [Google Scholar]
  36. Sandros J., Karlsson C., Lappin D. F., Madianos P. N., Kinane D. F., Papapanou P. N. 2000; Cytokine responses of oral epithelial cells to Porphyromonas gingivalis infection. J Dent Res 79:1808–1814
    [Google Scholar]
  37. Shi Y., Ratnayake D. B., Okamoto K., Abe N., Yamamoto K., Nakayama K. 1999; Genetic analyses of proteolysis, hemoglobin binding, and hemagglutination of Porphyromonas gingivalis. Construction of mutants with a combination of rgpA,rgpB, kgp, and hagA . J Biol Chem 274:17955–17960
    [Google Scholar]
  38. Takii R., Kadowaki T., Baba A., Tsukuba T., Yamamoto K. 2005; A functional virulence complex composed of gingipains, adhesins, and lipopolysaccharide shows high affinity to host cells and matrix proteins and escapes recognition by host immune systems. Infect Immun 73:883–893
    [Google Scholar]
  39. Tancharoen S., Sarker K. P., Imamura T., Biswas K. K., Matsushita K., Tatsuyama S., Travis J., Potempa J., Torii M., Maruyama I. 2005; Neuropeptide release from dental pulp cells by RgpB via proteinase-activated receptor-2 signaling. J Immunol 174:5796–5804
    [Google Scholar]
  40. Tatakis D. N., Kumar P. S. 2005; Etiology and pathogenesis of periodontal diseases. Dent Clin North Am 49:491–516 v
    [Google Scholar]
  41. Uehara A., Muramoto K., Imamura T., Nakayama K., Potempa J., Travis J., Sugawara S., Takada H. 2005; Arginine-specific gingipains from Porphyromonas gingivalis stimulate production of hepatocyte growth factor (scatter factor) through protease-activated receptors in human gingival fibroblasts in culture. J Immunol 175:6076–6084
    [Google Scholar]
  42. Uehara A., Imamura T., Potempa J., Travis J., Takada H. 2008a; Gingipains from Porphyromonas gingivalis synergistically induce the production of proinflammatory cytokines through protease-activated receptors with Toll-like receptor and NOD1/2 ligands in human monocytic cells. Cell Microbiol 10:1181–1189
    [Google Scholar]
  43. Uehara A., Naito M., Imamura T., Potempa J., Travis J., Nakayama K., Takada H. 2008b; Dual regulation of interleukin-8 production in human oral epithelial cells upon stimulation with gingipains from Porphyromonas gingivalis . J Med Microbiol 57:500–507
    [Google Scholar]
  44. Wang P. L., Oido-Mori M., Fujii T., Kowashi Y., Kikuchi M., Suetsugu Y., Tanaka J., Azuma Y., Shinohara M., Ohura K. 2002; Effect of anti-CD14 antibody on experimental periodontitis induced by Porphyromonas gingivalis lipopolysaccharide. Jpn J Pharmacol 89:176–183
    [Google Scholar]
  45. Weinberg A., Belton C. M., Park Y., Lamont R. J. 1997; Role of fimbriae in Porphyromonas gingivalis invasion of gingival epithelial cells. Infect Immun 65:313–316
    [Google Scholar]
  46. Yoneda M., Maeda K., Aono M. 1990; Suppression of bactericidal activity of human polymorphonuclear leukocytes by Bacteroides gingivalis . Infect Immun 58:406–411
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.029132-0
Loading
/content/journal/micro/10.1099/mic.0.029132-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error