1887

Abstract

The lipopolysaccharide O antigen of 2a has two preferred chain lengths, a short (S-OAg) composed of an average of 17 repeated units and a very long (VL-OAg) of about 90 repeated units. These chain length distributions are controlled by the chromosomally encoded WzzB and the plasmid-encoded Wzz proteins, respectively. In this study, genes , and (encoding the O-antigen polymerase) were cloned under the control of arabinose- and rhamnose-inducible promoters to investigate the effect of varying their relative expression levels on O antigen polysaccharide chain length distribution. Controlled expression of the chain length regulators and revealed a dose-dependent production of each modal length. Increase in one mode resulted in a parallel decrease in the other, indicating that chain length regulators compete to control the degree of O antigen polymerization. Also, when expression of the gene is low, S-OAg but not VL-OAg is produced. Production of VL-OAg requires high induction levels of . Thus, the level of expression of is critical in determining O antigen modal distribution. Western blot analyses of membrane proteins showed comparable high levels of the WzzB and Wzz proteins, but very low levels of Wzy. cross-linking experiments and immunoprecipitation of membrane proteins did not detect any direct interaction between Wzy and WzzB, suggesting the possibility that these two proteins may not interact physically but rather by other means such as via translocated O antigen precursors.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.028944-0
2009-10-01
2019-10-16
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/10/3260.html?itemId=/content/journal/micro/10.1099/mic.0.028944-0&mimeType=html&fmt=ahah

References

  1. Bastin, D. A., Stevenson, G., Brown, P. K., Haase, A. & Reeves, P. R. ( 1993; ). Repeat unit polysaccharides of bacteria: a model for polymerization resembling that of ribosomes and fatty acid synthetase, with a novel mechanism for determining chain length. Mol Microbiol 7, 725–734.[CrossRef]
    [Google Scholar]
  2. Bernardini, M. L., Mounier, J., d'Hauteville, H., Coquis-Rondon, M. & Sansonetti, P. J. ( 1989; ). Identification of icsA, a plasmid locus of Shigella flexneri that governs bacterial intra- and intercellular spread through interaction with F-actin. Proc Natl Acad Sci U S A 86, 3867–3871.[CrossRef]
    [Google Scholar]
  3. Bravo, D., Silva, C., Carter, J. A., Hoare, A., Alvarez, S. A., Blondel, C. J., Zaldivar, M., Valvano, M. A. & Contreras, I. ( 2008; ). Growth-phase regulation of lipopolysaccharide O-antigen chain length influences serum resistance in serovars of Salmonella. J Med Microbiol 57, 938–946.[CrossRef]
    [Google Scholar]
  4. Cardona, S. T. & Valvano, M. A. ( 2005; ). An expression vector containing a rhamnose-inducible promoter provides tightly regulated gene expression in Burkholderia cenocepacia. Plasmid 54, 219–228.[CrossRef]
    [Google Scholar]
  5. Carter, J. A., Blondel, C. J., Zaldivar, M., Alvarez, S. A., Marolda, C. L., Valvano, M. A. & Contreras, I. ( 2007; ). O-antigen modal chain length in Shigella flexneri 2a is growth-regulated through RfaH-mediated transcriptional control of the wzy gene. Microbiology 153, 3499–3507.[CrossRef]
    [Google Scholar]
  6. Daniels, C. & Morona, R. ( 1999; ). Analysis of Shigella flexneri wzz (Rol) function by mutagenesis and cross-linking: wzz is able to oligomerize. Mol Microbiol 34, 181–194.[CrossRef]
    [Google Scholar]
  7. Daniels, C., Vindurampulle, C. & Morona, R. ( 1998; ). Overexpression and topology of the Shigella flexneri O-antigen polymerase (Rfc/Wzy). Mol Microbiol 28, 1211–1222.[CrossRef]
    [Google Scholar]
  8. Daniels, C., Griffiths, C., Cowles, B. & Lam, J. S. ( 2002; ). Pseudomonas aeruginosa O-antigen chain length is determined before ligation to lipid A core. Environ Microbiol 4, 883–897.[CrossRef]
    [Google Scholar]
  9. Datsenko, K. A. & Wanner, B. L. ( 2000; ). One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 97, 6640–6645.[CrossRef]
    [Google Scholar]
  10. Feldman, M. F., Wacker, M., Hernandez, M., Hitchen, P. G., Marolda, C. L., Kowarik, M., Morris, H. R., Dell, A., Valvano, M. A. & Aebi, M. ( 2005; ). Engineering N-linked protein glycosylation with diverse O antigen lipopolysaccharide structures in Escherichia coli. Proc Natl Acad Sci U S A 102, 3016–3021.[CrossRef]
    [Google Scholar]
  11. Guo, H., Lokko, K., Zhang, Y., Yi, W., Wu, Z. & Wang, P. G. ( 2006; ). Overexpression and characterization of Wzz of Escherichia coli O86 : H2. Protein Expr Purif 48, 49–55.[CrossRef]
    [Google Scholar]
  12. Guzman, L. M., Belin, D., Carson, M. J. & Beckwith, J. ( 1995; ). Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. J Bacteriol 177, 4121–4130.
    [Google Scholar]
  13. Hong, M. & Payne, S. M. ( 1997; ). Effect of mutations in Shigella flexneri chromosomal and plasmid-encoded lipopolysaccharide genes on invasion and serum resistance. Mol Microbiol 24, 779–791.[CrossRef]
    [Google Scholar]
  14. Jennison, A. V. & Verma, N. K. ( 2004; ). Shigella flexneri infection: pathogenesis and vaccine development. FEMS Microbiol Rev 28, 43–58.[CrossRef]
    [Google Scholar]
  15. Kohler, H., Rodrigues, S. P. & McCormick, B. A. ( 2002; ). Shigella flexneri interactions with the basolateral membrane domain of polarized model intestinal epithelium: role of lipopolysaccharide in cell invasion and in activation of the mitogen-activated protein kinase ERK. Infect Immun 70, 1150–1158.[CrossRef]
    [Google Scholar]
  16. Larue, K., Kimber, M. S., Ford, R. & Whitfield, C. ( 2009; ). Biochemical and structural analysis of bacterial O antigen chain length regulator proteins reveals a conserved quaternary structure. J Biol Chem 284, 7395–7403.[CrossRef]
    [Google Scholar]
  17. Lesse, A. J., Campagnari, A. A., Bittner, W. E. & Apicella, M. A. ( 1990; ). Increased resolution of lipopolysaccharides and lipooligosaccharides utilizing tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis. J Immunol Methods 126, 109–117.[CrossRef]
    [Google Scholar]
  18. Marolda, C. L., Lahiry, P., Vines, E., Saldias, S. & Valvano, M. A. ( 2006a; ). Micromethods for the characterization of lipid A-core and O-antigen lipopolysaccharide. Methods Mol Biol 347, 237–252.
    [Google Scholar]
  19. Marolda, C. L., Tatar, L. D., Alaimo, C., Aebi, M. & Valvano, M. A. ( 2006b; ). Interplay of the Wzx translocase and the corresponding polymerase and chain length regulator proteins in the translocation and periplasmic assembly of lipopolysaccharide O antigen. J Bacteriol 188, 5124–5135.[CrossRef]
    [Google Scholar]
  20. Marolda, C. L., Haggerty, E. R., Lung, M. & Valvano, M. A. ( 2008; ). Functional analysis of predicted coiled-coil regions in the Escherichia coli K-12 O-antigen polysaccharide chain length determinant Wzz. J Bacteriol 190, 2128–2137.[CrossRef]
    [Google Scholar]
  21. Morona, R. & Van Den Bosch, L. ( 2003; ). Lipopolysaccharide O antigen chains mask IcsA (VirG) in Shigella flexneri. FEMS Microbiol Lett 221, 173–180.[CrossRef]
    [Google Scholar]
  22. Morona, R., Mavris, M., Fallarino, A. & Manning, P. A. ( 1994; ). Characterization of the rfc region of Shigella flexneri. J Bacteriol 176, 733–747.
    [Google Scholar]
  23. Morona, R., van den Bosch, L. & Manning, P. A. ( 1995; ). Molecular, genetic, and topological characterization of O-antigen chain length regulation in Shigella flexneri. J Bacteriol 177, 1059–1068.
    [Google Scholar]
  24. Morona, R., Daniels, C. & Van Den Bosch, L. ( 2003; ). Genetic modulation of Shigella flexneri 2a lipopolysaccharide O antigen modal chain length reveals that it has been optimized for virulence. Microbiology 149, 925–939.[CrossRef]
    [Google Scholar]
  25. Morona, R., Purins, L., Tocilj, A., Matte, A. & Cygler, M. ( 2009; ). Sequence–structure relationships in polysaccharide co-polymerase (PCP) proteins. Trends Biochem Sci 34, 78–84.[CrossRef]
    [Google Scholar]
  26. Okada, N., Sasakawa, C., Tobe, T., Yamada, M., Nagai, S., Talukder, K. A., Komatsu, K., Kanegasaki, S. & Yoshikawa, M. ( 1991; ). Virulence-associated chromosomal loci of Shigella flexneri identified by random Tn5 insertion mutagenesis. Mol Microbiol 5, 187–195.[CrossRef]
    [Google Scholar]
  27. Purins, L., Van Den Bosch, L., Richardson, V. & Morona, R. ( 2008; ). Coiled-coil regions play a role in the function of the Shigella flexneri O-antigen chain length regulator WzzpHS2. Microbiology 154, 1104–1116.[CrossRef]
    [Google Scholar]
  28. Raetz, C. R. & Whitfield, C. ( 2002; ). Lipopolysaccharide endotoxins. Annu Rev Biochem 71, 635–700.[CrossRef]
    [Google Scholar]
  29. Sandlin, R. C., Lampel, K. A., Keasler, S. P., Goldberg, M. B., Stolzer, A. L. & Maurelli, A. T. ( 1995; ). Avirulence of rough mutants of Shigella flexneri: requirement of O antigen for correct unipolar localization of IcsA in the bacterial outer membrane. Infect Immun 63, 229–237.
    [Google Scholar]
  30. Sansonetti, P. J. ( 2001; ). Microbes and microbial toxins: paradigms for microbial–mucosal interactions. III. Shigellosis: from symptoms to molecular pathogenesis. Am J Physiol Gastrointest Liver Physiol 280, G319–G323.
    [Google Scholar]
  31. Sansonetti, P. J. & Egile, C. ( 1998; ). Molecular bases of epithelial cell invasion by Shigella flexneri. Antonie Van Leeuwenhoek 74, 191–197.[CrossRef]
    [Google Scholar]
  32. Stenberg, F., Chovanec, P., Maslen, S. L., Robinson, C. V., Ilag, L. L., von Heijne, G. & Daley, D. O. ( 2005; ). Protein complexes of the Escherichia coli cell envelope. J Biol Chem 280, 34409–34419.[CrossRef]
    [Google Scholar]
  33. Stevenson, G., Kessler, A. & Reeves, P. R. ( 1995; ). A plasmid-borne O-antigen chain length determinant and its relationship to other chain length determinants. FEMS Microbiol Lett 125, 23–30.[CrossRef]
    [Google Scholar]
  34. Tang, K. H., Guo, H., Yi, W., Tsai, M. D. & Wang, P. G. ( 2007; ). Investigation of the conformational states of Wzz and the Wzz.O-antigen complex under near-physiological conditions. Biochemistry 46, 11744–11752.[CrossRef]
    [Google Scholar]
  35. Tocilj, A., Munger, C., Proteau, A., Morona, R., Purins, L., Ajamian, E., Wagner, J., Papadopoulos, M., Van Den Bosch, L. & other authors ( 2008; ). Bacterial polysaccharide co-polymerases share a common framework for control of polymer length. Nat Struct Mol Biol 15, 130–138.[CrossRef]
    [Google Scholar]
  36. Uzzau, S., Figueroa-Bossi, N., Rubino, S. & Bossi, L. ( 2001; ). Epitope tagging of chromosomal genes in Salmonella. Proc Natl Acad Sci U S A 98, 15264–15269.[CrossRef]
    [Google Scholar]
  37. Valvano, M. A. ( 2003; ). Export of O-specific lipopolysaccharide. Front Biosci 8, s452–s471.[CrossRef]
    [Google Scholar]
  38. Van den Bosch, L., Manning, P. A. & Morona, R. ( 1997; ). Regulation of O-antigen chain length is required for Shigella flexneri virulence. Mol Microbiol 23, 765–775.[CrossRef]
    [Google Scholar]
  39. West, N. P., Sansonetti, P., Mounier, J., Exley, R. M., Parsot, C., Guadagnini, S., Prévost, M. C., Prochnicka-Chalufour, A., Delepierre, M. & other authors ( 2005; ). Optimization of virulence functions through glucosylation of Shigella LPS. Science 307, 1313–1317.[CrossRef]
    [Google Scholar]
  40. Whitfield, C. ( 1995; ). Biosynthesis of lipopolysaccharide O antigens. Trends Microbiol 3, 178–185.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.028944-0
Loading
/content/journal/micro/10.1099/mic.0.028944-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error