1887

Abstract

pv. () causes bacterial blight disease in rice, one of the most serious rice diseases. The gene from strain 13751 encodes a protein containing a histone-like nucleoid-structuring protein (H-NS) domain. The expression of in strain 13751 was enhanced in XOM2 minimal medium. Mutation of the gene of strain 13751 led to a significant reduction in virulence in the host plant rice, a delayed hypersensitive response in the nonhost castor-oil plant, a decrease in extracellular polysaccharide and diffusible signal factor production, and an increase in intracellular glycogen accumulation. Northern hybridization analyses revealed that the virulence-associated genes , , , , and were downregulated in the mutant compared to the wild-type and complemented strains. Interestingly, increase of copy number of in the wild-type strain 13751 resulted in a strain showing similar phenotypes as the mutant and a reduction of the expression of , , , and . These findings indicate that the gene, which is highly conserved in the sequenced strains of , encodes an important regulatory factor for the virulence of .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.028910-0
2009-09-01
2021-01-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/9/3033.html?itemId=/content/journal/micro/10.1099/mic.0.028910-0&mimeType=html&fmt=ahah

References

  1. Alfano J. R., Collmer A. 1997; The type III (Hrp) secretion pathway of plant pathogenic bacteria: trafficking harpins, Avr proteins, and death. J Bacteriol 179:5655–5662
    [Google Scholar]
  2. Alwine J. C., Kemp D. J., Stark G. R. 1977; Method for detection of specific RNAs in agarose gels by transfer to diazobenzyloxymethyl-paper and hybridization with DNA probes. Proc Natl Acad Sci U S A 74:5350–5354
    [Google Scholar]
  3. Arlat M., Gough C. L., Barber C., Boucher C., Daniels M. J. 1991; Xanthomonas campestris contains a cluster of hrp genes related to the larger hrp cluster of Pseudomonas solanacearum . Mol Plant Microbe Interact 4:593–601
    [Google Scholar]
  4. Bai J., Choi S. H., Ponciano G., Leung H., Leach J. E. 2000; Xanthomonas oryzae pv. oryzae avirulence genes contribute differently and specifically to pathogen aggressiveness. Mol Plant Microbe Interact 13:1322–1329
    [Google Scholar]
  5. Barber C. E., Tang J. L., Feng J. X., Pan M. Q., Wilson T. J., Slater H., Dow J. M., Williams P., Daniels M. J. 1997; A novel regulatory system required for pathogenicity of Xanthomonas campestris is mediated by a small diffusible signal molecule. Mol Microbiol 24:555–566
    [Google Scholar]
  6. Bertin P., Hommais F., Krin E., Soutourina O., Tendeng C., Derzelle S., Danchin A. 2001; H-NS and H-NS-like proteins in Gram-negative bacteria and their multiple role in the regulation of bacterial metabolism. Biochimie 83:235–241
    [Google Scholar]
  7. Bogdanove A. J., Beer S. V., Bonas U., Boucher C. A., Collmer A., Coplin D. L., Cornelis G. R., Huang H. C., Hutcheson S. W. other authors 1996; Unified nomenclature for broadly conserved hrp genes of phytopathogenic bacteria. Mol Microbiol 20:681–683
    [Google Scholar]
  8. Bonas U., Schulete R., Fenselau S., Minsavage G. V., Staskawicz B. J., Stall R. E. 1991; Isolation of a gene cluster from Xanthomonas campestris pv. vesicatoria that determines pathogenicity and the hypersensitive response on pepper and tomato. Mol Plant Microbe Interact 4:81–88
    [Google Scholar]
  9. Chao N. X., Wei K., Chen Q., Meng Q. L., Tang D. J., He Y. Q., Lu G. T., Jiang B. L., Liang X. X. other authors 2008; The rsmA-like gene rsmA ( Xcc) of Xanthomonas campestris pv. campestris is involved in the control of various cellular processes, including pathogenesis. Mol Plant Microbe Interact 21:411–423
    [Google Scholar]
  10. Chatterjee S., Sonti R. V. 2002; rpfF mutants of Xanthomonas oryzae pv. oryzae are deficient for virulence and growth under low iron conditions. Mol Plant Microbe Interact 15:463–471
    [Google Scholar]
  11. Dalai B., Zhou R., Wan Y., Kang M., Li L., Li T., Zhang S., Chen H. 2009; Histone-like protein H-NS regulates biofilm formation and virulence of Actinobacillus pleuropneumoniae . Microb Pathog 46:128–134
    [Google Scholar]
  12. Daniels M. J., Barber C. E., Turner P. C., Sawczyc M. K., Byrde R. J. W., Fielding A. H. 1984; Cloning of genes involved in pathogenicity of Xanthomonas campestris pv. campestris using the broad host range cosmid pLAFR1. EMBO J 3:3323–3328
    [Google Scholar]
  13. Dharmapuri S., Sonti R. V. 1999; A transposon insertion in the gumG homologue of Xanthomonas oryzae pv. oryzae causes loss of extracellular polysaccharide production and virulence. FEMS Microbiol Lett 179:53–59
    [Google Scholar]
  14. Dharmapuri S., Yashitola J., Vishnupriya M. R., Sonti R. V. 2001; Novel genomic locus with atypical G+C content that is required for extracellular polysaccharide production and virulence in Xanthomonas oryzae pv. oryzae . Mol Plant Microbe Interact 14:1335–1339
    [Google Scholar]
  15. Dorman C. J. 2004; H-NS: a universal regulator for a dynamic genome. Nat Rev Microbiol 2:391–400
    [Google Scholar]
  16. Dorman C. J. 2007; H-NS, the genome sentinel. Nat Rev Microbiol 5:157–161
    [Google Scholar]
  17. Dow M. 2008; Diversification of the function of cell-to-cell signaling in regulation of virulence within plant pathogenic Xanthomonas . Sci Signal 1:pe23
    [Google Scholar]
  18. Fang F. C., Rimsky S. 2008; New insights into transcriptional regulation by H-NS. Curr Opin Microbiol 11:113–120
    [Google Scholar]
  19. Feng J. X., Li Y. R., Duan C. J., Tang J. L. 2001; Cloning and characterization of hrp gene from Xanthomonas oryzae pv. oryzae . In Plant Diseases and Their Control pp 26–27 Edited by Zeng S. M., Zhou G. H., Li. Beijing: China Agricultural Science and Technology Press;
    [Google Scholar]
  20. Hanahan D. 1983; Studies on transformation of E. coli with plasmids. J Mol Biol 166:557–580
    [Google Scholar]
  21. Harrison J. A., Pickard D., Higgins C. F., Khan A., Chatfield S. N., Ali T., Dorman C. J., Hormaeche C. E., Dougan G. 1994; Role of hns in the virulence phenotype of pathogenic salmonellae. Mol Microbiol 13:133–140
    [Google Scholar]
  22. He Y.-W., Zhang L.-H. 2008; Quorum sensing and virulence regulation in Xanthomonas campestris . FEMS Microbiol Rev 32:842–857
    [Google Scholar]
  23. He Y. Q., Zhang L., Jiang B. L., Zhang Z. C., Xu R. Q., Tang D. J., Qin J., Jiang W., Zhang X. other authors 2007; Comparative and functional genomics reveals genetic diversity and determinants of host specificity among reference strains and a large collection of Chinese isolates of the phytopathogen Xanthomonas campestris pv. campestris. Genome Biol 8R218
    [Google Scholar]
  24. Hildebrand M., Aldridge P., Geider K. 2006; Characterization of hns genes from Erwinia amylovora . Mol Genet Genomics 275:310–319
    [Google Scholar]
  25. Huynh T. V., Dahlbeck D., Staskawicz B. J. 1989; Bacterial blight of soybean: regulation of a pathogen gene determining host cultivar specificity. Science 245:1374–1377
    [Google Scholar]
  26. Jefferson R. A., Burges S. M., Hirsh D. 1986; β-Glucuronidase from Escherichia coli as a gene-fusion marker. Proc Natl Acad Sci U S A 83:8447–8451
    [Google Scholar]
  27. Jefferson R. A., Kavanagh T. A., Bevan M. W. 1987; GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3907
    [Google Scholar]
  28. Jeong K. S., Lee S. E., Han J. W., Yang S. U., Lee B. M., Noh T. H., Cha J. S. 2008; Virulence reduction and differing regulation of virulence genes in rpf mutants of Xanthomonas oryzae pv. oryzae . Plant Pathol J 24:143–151
    [Google Scholar]
  29. Katzen F., Becker A., Zorreguieta A., Puhler A., Ielpi L. 1996; Promoter analysis of the Xanthomonas campestris pv. campestris gum operon directing biosynthesis of the xanthan polysaccharide. J Bacteriol 178:4313–4318
    [Google Scholar]
  30. Katzen F., Becker A., Ielmini M. V., Oddo C. G., Ielpi L. 1999; New mobilizable vectors suitable for gene replacement in Gram-negative bacteria and their use in mapping of the 3′ end of the Xanthomonas campestris pv. campestris gum operon. Appl Environ Microbiol 65:278–282
    [Google Scholar]
  31. Kauffman H. E., Reddy A. P. K., Hsieh S. P. Y., Merca S. D. 1973; An improved technique for evaluating resistence of rice varieties to Xanthomonas oryzae . Plant Dis Rep 57:537–541
    [Google Scholar]
  32. Lahaye T., Bonas U. 2001; Molecular secrets of bacterial type III effector proteins. Trends Plant Sci 6:479–485
    [Google Scholar]
  33. Lee B. M., Park Y. J., Park D. S., Kang H. W., Kim J. G., Song E. S., Park I. C., Yoon U. H., Hahn J. H. other authors 2005; The genome sequence of Xanthomonas oryzae pathovar oryzae KACC10331, the bacterial blight pathogen of rice. Nucleic Acids Res 33:577–586
    [Google Scholar]
  34. Lee C. K., Lee B. M., Cho J. Y. 2008a; Identification of new internal promoters of the Xanthomonas oryzae pathovar oryzae gum gene cluster. Biotechnol Lett 30:521–527
    [Google Scholar]
  35. Lee S. W., Jeong K. S., Han S. W., Lee S. E., Phee B. K., Hahn T. R., Ronald P. 2008b; The Xanthomonas oryzae pv. oryzae PhoPQ two-component system is required for AvrXA21 activity, hrpG expression, and virulence. J Bacteriol 190:2183–2197
    [Google Scholar]
  36. Leong S. A., Ditta G. S., Helinski D. R. 1982; Heme biosynthesis in Rhizobium. Identification of a cloned gene coding for delta-aminolevulinic acid synthetase from Rhizobium meliloti . J Biol Chem 257:8724–8730
    [Google Scholar]
  37. Mew T. W., Alvarez A. M., Leach J. E., Swings J. 1993; Focus on bacterial blight of rice. Plant Dis 77:5–12
    [Google Scholar]
  38. Miller G. L. 1959; Use of dinitrosalicyclic acid reagent for determination of reducing sugar. Anal Chem 31:426–428
    [Google Scholar]
  39. Miller J. H. 1972 Experiments in Molecular Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  40. Müller C. M., Dobrindt U., Nagy G., Emödy L., Uhlin B. E., Hacker J. 2006; Role of histone-like proteins H-NS and StpA in expression of virulence determinants of uropathogenic Escherichia coli . J Bacteriol 188:5428–5438
    [Google Scholar]
  41. Nasser W., Faelen M., Hugouvieux-Cotte-Pattat N., Reverchon S. 2001; Role of the nucleoid-associated protein H-NS in the synthesis of virulence factors in the phytopathogenic bacterium Erwinia chrysanthemi . Mol Plant Microbe Interact 14:10–20
    [Google Scholar]
  42. Nino-Liu D. O., Ronald P. C., Bogdanove A. J. 2006; Xanthomonas oryzae pathovars: model pathogens of a model crop. Mol Plant Pathol 7:303–324
    [Google Scholar]
  43. Ochiai H., Inoue Y., Takeya M., Sasaki A., Kaku H. 2005; Genome sequence of Xanthomonas oryzae pv. oryzae suggests contribution of large numbers of effector genes and insertion sequences to its race diversity. Jpn Agric Res Q 39:275–287
    [Google Scholar]
  44. Ou S. H. 1985 Rice Diseases Kew, UK: Commonwealth Agricultural Bureaux;
    [Google Scholar]
  45. Ryan R. P., Fouhy Y., Lucey J. F., Crossman L. C., Spiro S., He Y. W., Zhang L. H., Heeb S., Cámara M. other authors 2006; Cell-cell signaling in Xanthomonas campestris involves an HD-GYP domain protein that functions in cyclic di-GMP turnover. Proc Natl Acad Sci U S A 103:6712–6717
    [Google Scholar]
  46. Salzberg S. L., Sommer D. D., Schatz M. C., Phillippy A. M., Rabinowicz P. D., Tsuge S., Furutani A., Ochiai H., Delcher A. L. other authors 2008; Genome sequence and rapid evolution of the rice pathogen Xanthomonas oryzae pv. oryzae PXO99A. BMC Genomics 9:204
    [Google Scholar]
  47. Sambrook J., Russell D. W. 2001 Molecular Cloning: a Laboratory Manual , 3rd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  48. Schulte R., Bonas U. 1992a; A Xanthomonas pathogenicity locus is induced by sucrose and sulfur-containing amino acids. Plant Cell 4:79–86
    [Google Scholar]
  49. Schulte R., Bonas U. 1992b; Expression of the Xanthomonas campestris pv. vesicatoria hrp gene cluster, which determines pathogenicity and hypersensitivity on pepper and tomato, is plant inducible. J Bacteriol 174:815–823
    [Google Scholar]
  50. Slater H., Alvarez-Morales A., Barber C. E., Daniels M. J., Dow J. M. 2000; A two-component system involving an HD-GYP domain protein links cell-cell signalling to pathogenicity gene expression in Xanthomonas campestris . Mol Microbiol 38:986–1003
    [Google Scholar]
  51. Sledjeski D., Gottesman S. A. 1995; A small RNA acts as an antisilencer of the H-NS-silenced rcsA gene of Escherichia coli . Proc Natl Acad Sci U S A 92:2003–2007
    [Google Scholar]
  52. Swift S., Lynch M. J., Fish L., Kirke D. F., Tomás J. M., Stewart G. S., Williams P. 1999; Quorum sensing-dependent regulation and blockade of exoprotease production in Aeromonas hydrophila . Infect Immun 67:5192–5199
    [Google Scholar]
  53. Tang J. L., Liu Y. N., Barber C. E., Dow J. M., Wootton J. C., Daniels M. J. 1991; Genetic and molecular analysis of a cluster of rpf genes involved in positive regulation of synthesis of extracellular enzymes and polysaccharide in Xanthomonas campestris pathovar campestris . Mol Gen Genet 226:409–417
    [Google Scholar]
  54. Tang J. L., Feng J. X., Li Q. Q., Wen H. X., Zhou D. L., Wilson T. J., Dow J. M., Ma Q. S., Daniels M. J. 1996; Cloning and characterization of the rpfC gene of Xanthomonas oryzae pv. oryzae: involvement in exopolysaccharide production and virulence to rice. Mol Plant Microbe Interact 9:664–666
    [Google Scholar]
  55. Tendeng C., Bertin P. N. 2003; H-NS in Gram-negative bacteria: a family of multifaceted proteins. Trends Microbiol 11:511–518
    [Google Scholar]
  56. Tsuge S., Furutani A., Fukunaka R., Oku T., Tsuno K., Ochiai H., Inoue Y., Kaku H., Kubo Y. 2002; Expression of Xanthomonas oryzae pv. oryzae hrp genes in XOM2, a novel synthetic medium. J Gen Plant Pathol 68:363–371
    [Google Scholar]
  57. Tsuge S., Nakayama T., Terashima S., Ochiai H., Furutani A., Oku T., Tsuno K., Kubo Y., Kaku H. 2006; Gene involved in transcriptional activation of the hrp regulatory gene hrpG in Xanthomonas oryzae pv. oryzae . J Bacteriol 188:4158–4162
    [Google Scholar]
  58. Turner P., Barber C. E., Daniels M. J. 1985; Evidence for clustered pathogenicity genes in Xanthomonas campestris pv. campestris . Mol Gen Genet 190:338–343
    [Google Scholar]
  59. Wang L. H., He Y., Gao Y., Wu J. E., Dong Y. H., He C., Wang S. X., Weng L. X., Xu J. L. other authors 2004; A bacterial cell-cell communication signal with cross-kingdom structural analogues. Mol Microbiol 51:903–912
    [Google Scholar]
  60. Wang J. C., So B. H., Kim J. H., Park Y. J., Lee B. M., Kang H. W. 2008; Genome-wide identification of pathogenicity genes in Xanthomonas oryzae pv. oryzae by transposon mutagenesis. Plant Pathol 57:1136–1145
    [Google Scholar]
  61. Wengelnik K., Bonas U. 1996; HrpXv, an AraC-type regulator, activates expression of five of the six loci in the hrp cluster of Xanthomonas campestris pv. vesicatoria . J Bacteriol 178:3462–3469
    [Google Scholar]
  62. Wengelnik K., Van den Ackerveken G., Bonas U. 1996; HrpG, a key hrp regulatory protein of Xanthomonas campestris pv. vesicatoria is homologous to two-component response regulators. Mol Plant Microbe Interact 9:704–712
    [Google Scholar]
  63. Windgassen M., Urban A., Jaeger K. E. 2000; Rapid gene inactivation in Pseudomonas aeruginosa . FEMS Microbiol Lett 193:201–205
    [Google Scholar]
  64. Yoon K. H., Cho J. Y. 2007; Transcriptional analysis of the gum gene cluster from Xanthomonas oryzae pathovar oryzae . Biotechnol Lett 29:95–103
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.028910-0
Loading
/content/journal/micro/10.1099/mic.0.028910-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error