1887

Abstract

Oxalate decarboxylase (ODC) catalyses the conversion of oxalic acid to formic acid and CO in bacteria and fungi. In wood-decaying fungi the enzyme has been linked to the regulation of intra- and extracellular quantities of oxalic acid, which is one of the key components in biological decomposition of wood. ODC enzymes are biotechnologically interesting for their potential in diagnostics, agriculture and environmental applications, e.g. removal of oxalic acid from industrial wastewaters. We identified a novel ODC in mycelial extracts of two wild-type isolates of , and cloned the corresponding gene. The primary structure of the Ds-ODC protein contains two conserved Mn-binding cupin motifs, but at the N-terminus, a unique, approximately 60 aa alanine-serine-rich region is found. Real-time quantitative RT-PCR analysis confirmed gene expression when the fungus was cultivated on wood and in liquid medium. However, addition of oxalic acid in liquid cultures caused no increase in transcript amounts, thereby indicating a constitutive rather than inducible expression of . The detected stimulation of ODC activity by oxalic acid is more likely due to enzyme activation than to transcriptional upregulation of the gene. Our results support involvement of ODC in primary rather than secondary metabolism in fungi.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.028860-0
2009-08-01
2019-10-15
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/8/2726.html?itemId=/content/journal/micro/10.1099/mic.0.028860-0&mimeType=html&fmt=ahah

References

  1. Aguilar, C., Urzúa, U., Koenig, C. & Vicuña, R. ( 1999; ). Oxalate oxidase from Ceriporiopsis subvermispora: biochemical and cytochemical studies. Arch Biochem Biophys 366, 275–282.[CrossRef]
    [Google Scholar]
  2. Anand, R., Dorrestein, P. C., Kinsland, C., Begley, T. P. & Ealick, S. E. ( 2002; ). Structure of oxalate decarboxylase from Bacillus subtilis at 1.75 Å resolution. Biochemistry 41, 7659–7669.[CrossRef]
    [Google Scholar]
  3. Anantharam, V., Allison, M. J. & Maloney, P. C. ( 1989; ). Oxalate: formate exchange. The basis for energy coupling in Oxalobacter. J Biol Chem 264, 7244–7250.
    [Google Scholar]
  4. Azam, M., Kesarwani, M., Chakraborty, S., Natarajan, K. & Datta, A. ( 2002; ). Cloning and characterization of the 5′-flanking region of the oxalate decarboxylase gene from Flammulina velutipes. Biochem J 367, 67–75.[CrossRef]
    [Google Scholar]
  5. Burrell, M. R., Just, V. J., Bowater, L., Fairhurst, S. A., Requena, L., Lawson, D. M. & Bornemann, S. ( 2007; ). Oxalate decarboxylase and oxalate oxidase activities can be interchanged with a specificity switch of up to 282,000 by mutating an active site lid. Biochemistry 46, 12327–12336.[CrossRef]
    [Google Scholar]
  6. Chakraborty, S., Chakraborty, N., Jain, D., Salunke, D. M. & Datta, A. ( 2002; ). Active site geometry of oxalate decarboxylase from Flammulina velutipes: role of histidine-coordinated manganese in substrate recognition. Protein Sci 11, 2138–2147.
    [Google Scholar]
  7. Chang, S., Puryear, J. & Cairney, J. ( 1993; ). A simple and efficient method for isolating RNA from pine trees. Plant Mol Biol Rep 11, 113–116.[CrossRef]
    [Google Scholar]
  8. Dias, B. B. A., Cunha, W. G., Morais, L. S., Vianna, G. R., Rech, E. L., de Capdeville, G. & Aragão, F. J. L. ( 2006; ). Expression of an oxalate decarboxylase gene from Flammulina sp. in transgenic lettuce (Lactuca sativa) plants and resistance to Sclerotinia sclerotiorum. Plant Pathol 55, 187–193.[CrossRef]
    [Google Scholar]
  9. Dunwell, J. M. & Gane, P. J. ( 1998; ). Microbial relatives of seed storage proteins: conservation of motifs in a functionally diverse superfamily of enzymes. J Mol Evol 46, 147–154.[CrossRef]
    [Google Scholar]
  10. Dunwell, J. M., Khuri, S. & Gane, P. J. ( 2000; ). Microbial relatives of the seed storage proteins of higher plants: conservation of structure, and diversification of function during evolution of the cupin superfamily. Microbiol Mol Biol Rev 64, 153–179.[CrossRef]
    [Google Scholar]
  11. Dunwell, J. M., Purvis, A. & Khuri, S. ( 2004; ). Cupins: the most functionally diverse protein superfamily? Phytochemistry 65, 7–17.[CrossRef]
    [Google Scholar]
  12. Dutton, M. V. & Evans, C. S. ( 1996; ). Oxalate production by fungi: its role in pathogenicity and ecology in the soil environment. Can J Microbiol 42, 881–895.[CrossRef]
    [Google Scholar]
  13. Dutton, M. V., Evans, C. S., Atkey, P. T. & Wood, D. A. ( 1993; ). Oxalate production by basidiomycetes, including the white-rot species Coriolus versicolor and Phanerochaete chrysosporium. Appl Microbiol Biotechnol 39, 5–10.[CrossRef]
    [Google Scholar]
  14. Dutton, M. V., Kathiara, M., Gallagher, I. M. & Evans, C. S. ( 1994; ). Purification and characterization of oxalate decarboxylase from Coriolus versicolor. FEMS Microbiol Lett 116, 321–326.[CrossRef]
    [Google Scholar]
  15. Emiliani, E. & Bekes, P. ( 1964; ). Enzymatic oxalate decarboxylation in Aspergillus niger. Arch Biochem Biophys 105, 488–493.[CrossRef]
    [Google Scholar]
  16. Escutia, M. R., Bowater, L., Edwards, A., Bottrill, A. R., Burrell, M., Polanco, R., Vicuña, R. & Bornemann, S. ( 2005; ). Cloning and sequencing of two Ceriporiopsis subvermispora bicupin oxalate oxidase allelic isoforms: implications for the reaction specificity of oxalate oxidases and decarboxylases. Appl Environ Microbiol 71, 3608–3616.[CrossRef]
    [Google Scholar]
  17. Espejo, E. & Agosin, E. ( 1991; ). Production and degradation of oxalic acid by brown rot fungi. Appl Environ Microbiol 57, 1980–1986.
    [Google Scholar]
  18. Fackler, K., Gradinger, C., Hinterstoisser, B., Messner, K. & Schwanninger, M. ( 2006; ). Lignin degradation by white rot fungi on spruce wood shavings during short-time solid-state fermentations monitored by near infrared spectroscopy. Enzyme Microb Technol 39, 1476–1483.[CrossRef]
    [Google Scholar]
  19. Galkin, S., Vares, T., Kalsi, M. & Hatakka, A. ( 1998; ). Production of organic acids by different white rot fungi as detected using capillary zone electrophoresis. Biotechnol Tech 12, 267–271.[CrossRef]
    [Google Scholar]
  20. Grujic, D., Salido, E. C., Shenoy, B. C., Langman, C. B., McGrath, M. E., Patel, R. J., Rashid, A., Mandapati, S., Jung, C. W. & Margolin, A. L. ( 2009; ). Hyperoxaluria is reduced and nephrocalcinosis prevented with an oxalate-degrading enzyme in mice with hyperoxaluria. Am J Nephrol 29, 86–93.[CrossRef]
    [Google Scholar]
  21. Hakala, T. K., Maijala, P., Konn, J. & Hatakka, A. ( 2004; ). Evaluation of novel wood-rotting polypores and corticioid fungi for the decay and biopulping of Norway spruce (Picea abies) wood. Enzyme Microb Technol 34, 255–263.[CrossRef]
    [Google Scholar]
  22. Hakala, T. K., Lundell, T., Galkin, S., Maijala, P., Kalkkinen, N. & Hatakka, A. ( 2005; ). Manganese peroxidases, laccases and oxalic acid from the selective white-rot fungus Physisporinus rivulosus grown on spruce wood chips. Enzyme Microb Technol 36, 461–468.[CrossRef]
    [Google Scholar]
  23. Hammel, K. E. & Cullen, D. ( 2008; ). Role of fungal peroxidases in biological ligninolysis. Curr Opin Plant Biol 11, 349–355.[CrossRef]
    [Google Scholar]
  24. Hatakka, A. ( 2001; ). Biodegradation of lignin. In Biopolymers, vol. 1: Lignin, Humic Substances and Coal, pp. 129–180. Edited by M. Hofrichter & A. Steinbüchel. Weinheim, Germany: Wiley-VCH.
  25. Hildén, K., Martinez, A. T., Hatakka, A. & Lundell, T. ( 2005; ). The two manganese peroxidases Pr-MnP2 and Pr-MnP3 of Phlebia radiata, a lignin-degrading basidiomycete, are phylogenetically and structurally divergent. Fungal Genet Biol 42, 403–419.[CrossRef]
    [Google Scholar]
  26. Hofrichter, M., Vares, T., Kalsi, M., Galkin, S., Scheibner, K., Fritsche, W. & Hatakka, A. ( 1999; ). Production of manganese peroxidase and organic acids and mineralization of 14C-labelled lignin (14C-DHP) during solid-state fermentation of wheat straw with the white rot fungus Nematoloma frowardii. Appl Environ Microbiol 65, 1864–1870.
    [Google Scholar]
  27. Just, V. J., Stevenson, C. E. M., Bowater, L., Tanner, A., Lawson, D. M. & Bornemann, S. ( 2004; ). A closed conformation of Bacillus subtilis oxalate decarboxylase OxdC provides evidence for the true identity of the active site. J Biol Chem 279, 19867–19874.[CrossRef]
    [Google Scholar]
  28. Just, V. J., Burrell, M. R., Bowater, L., McRobbie, I., Stevenson, C. E. M., Lawson, D. M. & Bornemann, S. ( 2007; ). The identity of the active site of oxalate decarboxylase and the importance of the stability of active site lid conformations. Biochem J 407, 397–406.[CrossRef]
    [Google Scholar]
  29. Kathiara, M., Wood, D. A. & Evans, C. S. ( 2000; ). Detection and partial characterization of oxalate decarboxylase from Agaricus biosporus. Mycol Res 104, 345–350.[CrossRef]
    [Google Scholar]
  30. Kesarwani, M., Azam, M., Natarajan, K., Mehta, A. & Datta, A. ( 2000; ). Oxalate decarboxylase from Collybia velutipes. Molecular cloning and its overexpression to confer resistance to fungal infection in transgenic tobacco and tomato. J Biol Chem 275, 7230–7238.[CrossRef]
    [Google Scholar]
  31. Khuri, S., Bakker, F. T. & Dunwell, J. M. ( 2001; ). Phylogeny, function, and evolution of the cupins, a structurally conserved, functionally diverse superfamily of proteins. Mol Biol Evol 18, 593–605.[CrossRef]
    [Google Scholar]
  32. Kuan, I. C. & Tien, M. ( 1993; ). Stimulation of Mn peroxidase activity: a possible role for oxalate in lignin biodegradation. Proc Natl Acad Sci U S A 90, 1242–1246.[CrossRef]
    [Google Scholar]
  33. Kupfer, D. M., Drabenstot, S. D., Buchanan, K. L., Lai, H., Zhu, H., Dyer, D. W., Roe, B. A. & Murphy, J. W. ( 2004; ). Introns and splicing elements of five diverse fungi. Eukaryot Cell 3, 1088–1100.[CrossRef]
    [Google Scholar]
  34. Livak, K. J. & Schmittgen, T. D. ( 2001; ). Analysis of relative gene expression data using real-time quantitative PCR and the method. Methods 25, 402–408.[CrossRef]
    [Google Scholar]
  35. Magro, P., Marciano, P. & Di Lenna, P. ( 1988; ). Enzymatic oxalate decarboxylation in isolates of Sclerotinia sclerotiorum. FEMS Microbiol Lett 49, 49–52.[CrossRef]
    [Google Scholar]
  36. Mäkelä, M., Galkin, S., Hatakka, A. & Lundell, T. ( 2002; ). Production of organic acids and oxalate decarboxylase in lignin-degrading white rot fungi. Enzyme Microb Technol 30, 542–549.[CrossRef]
    [Google Scholar]
  37. Mäkelä, M. R., Hildén, K. S., Hakala, T. K., Hatakka, A. & Lundell, T. K. ( 2006; ). Expression and molecular properties of a new laccase of the white rot fungus Phlebia radiata grown on wood. Curr Genet 50, 323–333.[CrossRef]
    [Google Scholar]
  38. Martinez, D., Challacombe, J., Morgenstern, I., Hibbett, D., Schmoll, M., Kubicek, C. P., Ferreira, P., Ruiz-Duenas, F. J., Martinez, A. T. & other authors ( 2009; ). Genome, transcriptome, and secretome analysis of wood decay fungus Postia placenta supports unique mechanisms of lignocellulose conversion. Proc Natl Acad Sci U S A 106, 1954–1959.[CrossRef]
    [Google Scholar]
  39. Mehta, A. & Datta, A. ( 1991; ). Oxalate decarboxylase from Collybia velutipes. Purification, characterization, and cDNA cloning. J Biol Chem 266, 23548–23553.
    [Google Scholar]
  40. Micales, J. A. ( 1997; ). Localization and induction of oxalate decarboxylase in the brown-rot wood decay fungus Postia placenta. Int Biodeterior Biodegrad 39, 125–132.[CrossRef]
    [Google Scholar]
  41. Munir, E., Yoon, J.-J., Tokimatsu, T., Hattori, T. & Shimada, M. ( 2001; ). New role for glyoxylate cycle enzymes in wood-rotting basidiomycetes in relation to biosynthesis of oxalic acid. J Wood Sci 47, 368–373.[CrossRef]
    [Google Scholar]
  42. Périé, F. H. & Gold, M. H. ( 1991; ). Manganese regulation of manganese peroxidase expression and lignin degradation by the white rot fungus Dichomitus squalens. Appl Environ Microbiol 57, 2240–2245.
    [Google Scholar]
  43. Périé, F. H., Reddy, V. B., Blackburn, N. J. & Gold, M. H. ( 1998; ). Purification and characterization of laccases from the white-rot basidiomycete Dichomitus squalens. Arch Biochem Biophys 353, 349–355.[CrossRef]
    [Google Scholar]
  44. Reinhardt, L. A., Svedružić, D., Chang, C. H., Cleland, W. W. & Richards, N. G. J. ( 2003; ). Heavy atom isotope effects on the reaction catalyzed by the oxalate decarboxylase from Bacillus subtilis. J Am Chem Soc 125, 1244–1252.[CrossRef]
    [Google Scholar]
  45. Rep, M., Duyvesteijn, R. G. E., Gale, L., Usgaard, T., Cornelissen, B. J. C., Ma, L.-J. & Ward, T. J. ( 2006; ). The presence of GC-AG introns in Neurospora crassa and other euascomycetes determined from analyses of complete genomes: implications for automated gene prediction. Genomics 87, 338–347.[CrossRef]
    [Google Scholar]
  46. Sato, S., Liu, F., Koc, H. & Tien, M. ( 2007; ). Expression analysis of extracellular proteins from Phanerochaete chrysosporium grown on different liquid and solid substrates. Microbiology 153, 3023–3033.[CrossRef]
    [Google Scholar]
  47. Shimada, M., Akamatsu, Y., Tokimatsu, T., Mii, K. & Hattori, T. ( 1997; ). Possible biochemical roles of oxalic acid as a low molecular weight compound involved in brown-rot and white-rot wood decays. J Biotechnol 53, 103–113.[CrossRef]
    [Google Scholar]
  48. Sjöde, A., Winestrand, S., Nilvebrant, N.-O. & Jönsson, L. J. ( 2008; ). Enzyme-based control of oxalic acid in the pulp and paper industry. Enzyme Microb Technol 43, 78–83.[CrossRef]
    [Google Scholar]
  49. Svedružić, D., Jónsson, S., Toyota, C., Reinhardt, L., Ricagno, S., Lindqvist, Y. & Richards, N. ( 2005; ). The enzymes of oxalate metabolism: unexpected structures and mechanisms. Arch Biochem Biophys 433, 176–192.[CrossRef]
    [Google Scholar]
  50. Svedružić, D., Liu, Y., Reinhardt, L. A., Wroclawska, E., Wallace Cleland, W. & Richards, N. G. J. ( 2007; ). Investigating the roles of putative active site residues in the oxalate decarboxylase from Bacillus subtilis. Arch Biochem Biophys 464, 36–47.[CrossRef]
    [Google Scholar]
  51. Tamura, K., Dudley, J., Nei, M. & Kumar, S. ( 2007; ). mega4: Molecular Evolutionary Genetics Analysis (mega) software version 4.0. Mol Biol Evol 24, 1596–1599.[CrossRef]
    [Google Scholar]
  52. Tanner, A. & Bornemann, S. ( 2000; ). Bacillus subtilis YvrK is an acid-induced oxalate decarboxylase. J Bacteriol 182, 5271–5273.[CrossRef]
    [Google Scholar]
  53. Urzúa, U., Kersten, P. J. & Vicuña, R. ( 1998; ). Manganese peroxidase-dependent oxidation of glyoxylic acid synthetized by Ceriporiopsis subvermispora produces extracellular hydrogen peroxide. Appl Environ Microbiol 64, 68–73.
    [Google Scholar]
  54. Watanabe, T., Hattori, T., Tengku, S. & Shimada, M. ( 2005; ). Purification and characterization of NAD-dependent formate dehydrogenase from the white-rot fungus Ceriporiopsis subvermispora and a possible role of the enzyme in oxalate metabolism. Enzyme Microb Technol 37, 68–75.[CrossRef]
    [Google Scholar]
  55. Wu, Q. & Krainer, A. R. ( 1999; ). AT-AC pre-mRNA splicing mechanisms and conservation of minor introns in voltage-gated ion channel genes. Mol Cell Biol 19, 3225–3236.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.028860-0
Loading
/content/journal/micro/10.1099/mic.0.028860-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error