1887

Abstract

Cells of wild-type exhibit a low-calcium response (LCR) defined as bacteriostasis with expression of a pCD-encoded type III secretion system (T3SS) during cultivation at 37 °C without added Ca versus vegetative growth with downregulation of the T3SS with Ca (≥2.5 mM). Bacteriostasis is known to reflect cumulative toxicity of Na, -glutamic acid and culture pH; control of these variables enables full-scale growth (‘rescue’) in the absence of Ca. Several T3SS regulatory proteins modulate the LCR, because their absence promotes a Ca-blind phenotype in which growth at 37 °C ceases and the T3SS is constitutive even with added Ca. This study analysed the connection between the LCR and Ca by determining the response of selected Ca-blind mutants grown in Ca-deficient rescue media containing Na plus -glutamate (pH 5.5), where the T3SS is not expressed, -glutamate alone (pH 6.5), where -aspartate is fully catabolized, and Na alone (pH 9.0), where the electrogenic sodium pump NADH : ubiquinone oxidoreductase becomes activated. All three conditions supported essentially full-scale Ca-independent growth at 37 °C of wild-type as well as and mutants (possessing a complete but dysregulated T3SS), indicating that bacteriostasis reflects a Na-dependent lesion in bioenergetics. In contrast, mutants lacking the negative regulator YopD or the YopD chaperone (LcrH) failed to grow in any rescue medium and are therefore truly temperature-sensitive. The Ca-blind phenotype was fully suppressed in a Ca-independent background lacking the injectisome-associated inner-membrane component YscV but not peripheral YscK, suggesting that the core translocon energizes YopD.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.028852-0
2009-08-01
2019-10-14
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/8/2509.html?itemId=/content/journal/micro/10.1099/mic.0.028852-0&mimeType=html&fmt=ahah

References

  1. Achtman, M., Zurth, K., Morelli, G., Torrea, G., Guiyoule, A. & Carniel, E. ( 1999; ). Yersinia pestis, the cause of plague, is a recently emerged clone of Yersinia pseudotuberculosis. Proc Natl Acad Sci U S A 96, 14043–14048.[CrossRef]
    [Google Scholar]
  2. Anderson, D. M., Ramamurthi, K. S., Tam, C. & Schneewind, O. ( 2002; ). YopD and LcrH regulate expression of Yersinia enterocolitica YopQ by a posttranscriptional mechanism and bind to yopQ RNA. J Bacteriol 184, 1287–1295.[CrossRef]
    [Google Scholar]
  3. Beesley, E. D., Brubaker, R. R., Janssen, W. A. & Surgalla, M. J. ( 1967; ). Pesticins. III. Expression of coagulase and mechanism of fibrinolysis. J Bacteriol 94, 19–26.
    [Google Scholar]
  4. Brubaker, R. R. ( 1967; ). Growth of Pasteurella pseudotuberculosis in simulated intracellular and extracellular environments. J Infect Dis 117, 403–417.[CrossRef]
    [Google Scholar]
  5. Brubaker, R. R. ( 2005; ). Influence of Na+, dicarboxylic amino acids, and pH in modulating the low-calcium response of Yersinia pestis. Infect Immun 73, 4743–4752.[CrossRef]
    [Google Scholar]
  6. Brubaker, R. R. ( 2007; ). Intermediary metabolism, Na+, the low calcium-response, and acute disease. In The Genus Yersinia: From Genomics to Function, pp. 116–129. Edited by R. D. Perry. New York: Springer.
  7. Brubaker, R. R. & Surgalla, M. J. ( 1962; ). Pesticins II. Production of pesticin I and II. J Bacteriol 84, 539–545.
    [Google Scholar]
  8. Brubaker, R. R. & Surgalla, M. J. ( 1964; ). The effect of Ca++ and Mg++ on lysis, growth, and production of virulence antigens by Pasteurella pestis. J Infect Dis 114, 13–25.[CrossRef]
    [Google Scholar]
  9. Brubaker, R. R., Sample, A. K., Yu, D.-Z., Zahorchak, R. J., Hu, P. C. & Fowler, J. M. ( 1987; ). Proteolysis of V antigen from Yersinia pestis. Microb Pathog 2, 49–62.[CrossRef]
    [Google Scholar]
  10. Carter, P. B., Zahorchak, R. J. & Brubaker, R. R. ( 1980; ). Plague virulence antigens from Yersinia enterocolitica. Infect Immun 28, 638–640.
    [Google Scholar]
  11. Chain, P. S., Carniel, E., Larimer, F. W., Lamerdin, J., Stoutland, P. O., Regala, W. M., Georgescu, A. M., Vergez, L. M., Land, M. L. & other authors ( 2004; ). Insights into the evolution of Yersinia pestis through whole-genome comparison with Yersinia pseudotuberculosis. Proc Natl Acad Sci U S A 101, 13826–13831.[CrossRef]
    [Google Scholar]
  12. Cheng, L. W., Kay, O. & Schneewind, O. ( 2001; ). Regulated secretion of YopN by the type III machinery of Yersinia enterocolitica. J Bacteriol 183, 5293–5301.[CrossRef]
    [Google Scholar]
  13. Cornelis, G. R. & Wolf-Watz, H. ( 1997; ). The Yersinia Yop virulon: a bacterial system for subverting eukaryotic cells. Mol Microbiol 23, 861–867.[CrossRef]
    [Google Scholar]
  14. Cornelis, G., Sluiters, C., Lambert de Rouvroit, C. & Michiels, T. ( 1989; ). Homology between VirF, the transcriptional activator of the Yersinia virulence regulon, and AraC, the Escherichia coli arabinose operon regulator. J Bacteriol 171, 254–262.
    [Google Scholar]
  15. Cornelis, G. R., Sluiters, C., Delor, I., Geib, D., Kaniga, K., Lambert de Rouvroit, C., Sory, M. P., Vanooteghem, J. C. & Michiels, T. ( 1991; ). ymoA, a Yersinia enterocolitica chromosomal gene modulating the expression of virulence functions. Mol Microbiol 5, 1023–1034.[CrossRef]
    [Google Scholar]
  16. Deguchi, Y., Yamato, I. & Anraku, Y. ( 1989; ). Molecular cloning of gltS and gltP, which encode glutamate carriers of Escherichia coli B. J Bacteriol 171, 1314–1319.
    [Google Scholar]
  17. Deng, W., Burland, V., Plunkett, G. I., 3rd, Boutin, A., Mayhew, G. F., Liss, P., Perna, N. T., Rose, D. J., Mau, B. & other authors ( 2002; ). Genome sequence of Y. pestis KIM. J Bacteriol 184, 4601–4611.[CrossRef]
    [Google Scholar]
  18. Dreyfus, L. A. & Brubaker, R. R. ( 1978; ). Consequences of aspartase deficiency in Yersinia pestis. J Bacteriol 136, 757–764.
    [Google Scholar]
  19. Ferber, D. M. & Brubaker, R. R. ( 1981; ). Plasmids in Yersinia pestis. Infect Immun 31, 839–841.
    [Google Scholar]
  20. Ferracci, F., Schubot, F. D., Waugh, D. S. & Plano, G. V. ( 2005; ). Selection and characterization of Yersinia pestis YopN mutants that constitutively block Yop secretion. Mol Microbiol 57, 970–987.[CrossRef]
    [Google Scholar]
  21. Fields, K. A., Plano, G. V. & Straley, S. C. ( 1994; ). A low-Ca2+ response (LCR) secretion (ysc) locus lies within the lcrB region of the LCR plasmid in Yersinia pestis. J Bacteriol 176, 569–579.
    [Google Scholar]
  22. Fields, K. A., Nilles, M. L., Cowan, C. & Straley, S. C. ( 1999; ). Virulence role of V antigen of Yersinia pestis at the bacterial surface. Infect Immun 67, 5395–5408.
    [Google Scholar]
  23. Finegold, M. J., Petery, R. F., Berendt, R. F. & Adams, H. R. ( 1968; ). Studies on the pathogenesis of plague. Blood coagulation and tissue responses of Macaca mulatta following exposure to aerosols of Pasteurella pestis. Am J Pathol 53, 99–114.
    [Google Scholar]
  24. Fowler, J. M. & Brubaker, R. R. ( 1994; ). Physiological basis of the low calcium response in Yersinia pestis. Infect Immun 62, 5234–5241.
    [Google Scholar]
  25. Francis, M. S., Lloyd, S. A. & Wolf-Watz, H. ( 2001; ). The type III secretion chaperone LcrH co-operates with YopD to establish a negative, regulatory loop for control of Yop synthesis in Yersinia pseudotuberculosis. Mol Microbiol 42, 1075–1093.[CrossRef]
    [Google Scholar]
  26. Goguen, J. D., Yother, J. & Straley, S. C. ( 1984; ). Genetic analysis of the low calcium response in Yersinia pestis Mu d1(Ap lac) insertion mutants. J Bacteriol 160, 842–848.
    [Google Scholar]
  27. Guzman, L. M., Belin, G., Carson, M. J. & Beckwith, J. ( 1995; ). Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. J Bacteriol 177, 4121–4130.
    [Google Scholar]
  28. Hall, P. J., Yang, G. C. H., Little, R. V. & Brubaker, R. R. ( 1974; ). Effect of Ca2+ on morphology and division of Yersinia pestis. Infect Immun 9, 1105–1113.
    [Google Scholar]
  29. Higuchi, K. & Smith, J. L. ( 1961; ). Studies on the nutrition and physiology of Pasteurella pestis: VI. A differential plating medium for the estimation of the mutation rate to avirulence. J Bacteriol 81, 605–608.
    [Google Scholar]
  30. Higuchi, K., Kupferberg, L. L. & Smith, J. L. ( 1959; ). Studies on the nutrition and physiology of Pasteurella pestis. III. Effects of calcium ions on the growth of virulent and avirulent strains of Pasteurella pestis. J Bacteriol 77, 317–321.
    [Google Scholar]
  31. Hoe, N. P. & Goguen, J. D. ( 1993; ). Temperature sensing in Yersinia pestis: translation of the LcrF activator protein is thermally regulated. J Bacteriol 175, 7901–7909.
    [Google Scholar]
  32. Hu, P., Elliott, J., McCready, P., Skowronski, E., Garnes, J., Kobayashi, A., Brubaker, R. R. & Garcia, E. ( 1998; ). Structural organization of virulence-associated plasmids of Yersinia pestis. J Bacteriol 180, 5192–5202.
    [Google Scholar]
  33. Kalman, M., Gentry, D. R. & Cashel, M. ( 1991; ). Characterization of the Escherichia coli K12 gltS glutamate permease gene. Mol Gen Genet 225, 379–386.
    [Google Scholar]
  34. Kugelmass, I. N. ( 1959; ). Biochemistry of Blood in Health and Disease. Springfield, IL: Charles C. Thomas, Inc.
  35. Kupferberg, L. L. & Higuchi, K. ( 1958; ). Role of calcium ions in the stimulation of growth of virulent strains of Pasteurella pestis. J Bacteriol 76, 120–121.
    [Google Scholar]
  36. MacDonald, R. E., Lanyi, J. K. & Greene, R. V. ( 1977; ). Sodium-stimulated glutamate uptake in membrane vesicles of Escherichia coli: the role of ion gradients. Proc Natl Acad Sci U S A 74, 3167–3170.[CrossRef]
    [Google Scholar]
  37. Matson, J. S. & Nilles, M. L. ( 2001; ). LcrG–LcrV interaction is required for control of Yops secretion in Yersinia pestis. J Bacteriol 183, 5082–5091.[CrossRef]
    [Google Scholar]
  38. McMurry, J. L., Van Arnam, J. S., Kihara, M. & Macnab, R. M. ( 2004; ). Analysis of the cytoplasmic domains of Salmonella FlhA and interactions with components of the flagellar export machinery. J Bacteriol 186, 7586–7592.[CrossRef]
    [Google Scholar]
  39. Medini, D., Covacci, A. & Donati, C. ( 2006; ). Protein homology network families reveal step-wise diversification of Type III and Type IV secretion systems. PLOS Comput Biol 2, e173 [CrossRef]
    [Google Scholar]
  40. Metcalf, W. W., Jiang, W., Daniels, L. L., Kim, S.-K., Haldimann, A. & Wanner, B. L. ( 1996; ). Conditionally replicative and congugative plasmids carrying lacZα for cloning, mutagenesis, and allele replacement in bacteria. Plasmid 35, 1–13.[CrossRef]
    [Google Scholar]
  41. Miller, V. L. & Mekalanos, J. J. ( 1988; ). A novel suicide vector and its use in construction of insertion mutations: osmoregulation of outer membrane proteins and virulence determinants in Vibrio cholerae requires toxR. J Bacteriol 170, 2575–2583.
    [Google Scholar]
  42. Minamino, T. & Macnab, R. M. ( 2000; ). Domain structure of Salmonella FlhB, a flagellar export component responsible for substrate specificity switching. J Bacteriol 182, 4906–4914.[CrossRef]
    [Google Scholar]
  43. Moore, R. L. & Brubaker, R. R. ( 1975; ). Hybridization of deoxyribonucleotide sequences of Yersinia enterocolitica and other selected members of Enterobacteriaceae. Int J Syst Bacteriol 25, 336–339.[CrossRef]
    [Google Scholar]
  44. Motin, V. L., Nakajima, R., Smirvov, G. B. & Brubaker, R. R. ( 1994; ). Passive immunity to yersiniae mediated by anti-recombinant V antigen and protein A–V antigen fusion peptide. Infect Immun 62, 4192–4201.
    [Google Scholar]
  45. Nilles, M. L., Williams, A. W., Skrzypek, E. & Straley, S. C. ( 1997; ). Yersinia pestis LcrV forms a stable complex with LcrG and may have a secretion-related regulatory role in the low-Ca2+ response. J Bacteriol 179, 1307–1316.
    [Google Scholar]
  46. Nilles, M. L., Fields, K. A. & Straley, S. C. ( 1998; ). The V antigen of Yersinia pestis regulates Yop vectorial targeting as well as Yop secretion through effects on YopB and LcrG. J Bacteriol 180, 3410–3420.
    [Google Scholar]
  47. Parkhill, J., Wren, B. W., Thomson, N. R., Titball, R. W., Holden, M. T., Prentice, M. B., Sebaihia, M., James, K. D., Churcher, C. & other authors ( 2001; ). Genome sequence of Yersinia pestis, the causative agent of plague. Nature 413, 523–527.[CrossRef]
    [Google Scholar]
  48. Perry, R. D. & Brubaker, R. R. ( 1987; ). Transport of Ca2+ by Yersinia pestis. J Bacteriol 169, 4861–4864.
    [Google Scholar]
  49. Plano, G. V. & Straley, S. C. ( 1993; ). Multiple effects of lcrD mutations in Yersinia pestis. J Bacteriol 175, 3536–3545.
    [Google Scholar]
  50. Plano, G. V. & Straley, S. C. ( 1995; ). Mutations in yscC, yscD, and yscG prevent high-level expression and secretion of V antigen and Yops in Yersinia pestis. J Bacteriol 177, 3843–3854.
    [Google Scholar]
  51. Plano, G. V., Barve, S. S. & Straley, S. C. ( 1991; ). LcrD, a membrane-bound regulator of the Yersinia pestis low-calcium response. J Bacteriol 173, 7293–7303.
    [Google Scholar]
  52. Portnoy, D. A., Moseley, S. L. & Falkow, S. ( 1981; ). Characterization of plasmids and plasmid-associated determinants of Yersinia enterocolitica pathogenesis. Infect Immun 31, 775–782.
    [Google Scholar]
  53. Price, S. B. & Straley, S. C. ( 1989; ). lcrH, a gene necessary for virulence of Yersinia pestis and for the normal response of Y. pestis to ATP and calcium. Infect Immun 57, 1491–1498.
    [Google Scholar]
  54. Price, S. B., Cowan, C., Perry, R. D. & Straley, S. C. ( 1991; ). The V antigen is a regulator protein necessary for the Ca2+-dependent growth and the maximal expression of low Ca2+-response virulence genes in Yersinia pestis. J Bacteriol 173, 2649–2657.
    [Google Scholar]
  55. Protsenko, O. A., Anisimov, P. I., Mosarov, O. T., Donnov, N. P., Popov, Y. A. & Kokushkin, A. M. ( 1983; ). Detection and characterization of Yersinia pestis plasmids determining pesticin I, fraction 1 antigen and mouse toxin synthesis. Genetika 19, 1081–1090.
    [Google Scholar]
  56. Rosqvist, R., Magnusson, K. E. & Wolf-Watz, H. ( 1994; ). Target cell contact triggers expression and polarized transfer of Yersinia YopE cytotoxin into mammalian cells. EMBO J 13, 964–972.
    [Google Scholar]
  57. Sample, A. K., Fowler, J. M. & Brubaker, R. R. ( 1987; ). Modulation of the low calcium response in Yersinia pestis by plasmid–plasmid interaction. Microb Pathog 2, 443–453.[CrossRef]
    [Google Scholar]
  58. Schellenberg, G. D. & Furlong, C. E. ( 1977; ). Resolution of the multiplicity of the glutamate and aspartate transport systems of Escherichia coli. J Biol Chem 252, 9055–9064.
    [Google Scholar]
  59. Straley, S. C. & Bowmer, W. S. ( 1986; ). Virulence genes regulated at the transcriptional level by Ca2+ in Yersinia pestis include structural genes for outer membrane proteins. Infect Immun 51, 445–454.
    [Google Scholar]
  60. Straley, S. C. & Brubaker, R. R. ( 1981; ). Cytoplasmic and membrane proteins of yersiniae cultivated under conditions simulating mammalian intracellular environment. Proc Natl Acad Sci U S A 78, 1224–1228.[CrossRef]
    [Google Scholar]
  61. Torruellas, J., Jackson, M. W., Pennock, J. W. & Plano, G. V. ( 2005; ). The Yersinia pestis type III secretion needle plays a role in the regulation of Yop secretion. Mol Microbiol 57, 1719–1733.[CrossRef]
    [Google Scholar]
  62. Wattiau, P. B., Bernier, P., Deslée, P., Michiels, T. & Cornelis, G. ( 1994; ). Individual chaperones required for Yop secretion by Yersinia. Proc Natl Acad Sci U S A 91, 10493–10497.[CrossRef]
    [Google Scholar]
  63. Wilharm, G., Lehmann, V., Krauss, K., Lehnert, B., Richter, S., Ruckdeschel, K., Heesemann, J. & Trülzsch, K. ( 2004; ). Yersinia enterocolitica type III secretion depends on the proton motive force but not on the flagellar motor components MotA and MotB. Infect Immun 72, 4004–4009.[CrossRef]
    [Google Scholar]
  64. Williams, A. W. & Straley, S. C. ( 1998; ). YopD of Yersinia pestis plays a role in negative regulation of the low-calcium response in addition to its role in translocation of Yops. J Bacteriol 180, 350–358.
    [Google Scholar]
  65. Wulff-Strobel, C. R., Williams, A. W. & Straley, S. C. ( 2002; ). LcrQ and SycH function together at the Ysc type III secretion system in Yersinia pestis to impose a hierarchy of secretion. Mol Microbiol 43, 411–423.[CrossRef]
    [Google Scholar]
  66. Zahorchak, R. J. & Brubaker, R. R. ( 1982; ). Effect of exogenous nucleotides on Ca2+ dependence and V antigen synthesis in Yersinia pestis. Infect Immun 38, 953–959.
    [Google Scholar]
  67. Zahorchak, R. J., Charnetzky, W. T., Little, R. V. & Brubaker, R. R. ( 1979; ). Consequences of Ca2+ deficiency on macromolecular synthesis and adenylate energy charge in Yersinia pestis. J Bacteriol 139, 792–799.
    [Google Scholar]
  68. Zhou, W., Bertsova, Y. V., Feng, B., Tsatsos, P., Verkhovskaya, M. I., Gennis, R. B., Bogachev, A. V. & Barquera, B. ( 1999; ). Sequencing and preliminary characterization of the Na+-translocating NADH : ubiquinone oxidoreductase from Vibrio harveyi. Biochemistry 38, 16246–16252.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.028852-0
Loading
/content/journal/micro/10.1099/mic.0.028852-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error