1887

Abstract

Cells of wild-type exhibit a low-calcium response (LCR) defined as bacteriostasis with expression of a pCD-encoded type III secretion system (T3SS) during cultivation at 37 °C without added Ca versus vegetative growth with downregulation of the T3SS with Ca (≥2.5 mM). Bacteriostasis is known to reflect cumulative toxicity of Na, -glutamic acid and culture pH; control of these variables enables full-scale growth (‘rescue’) in the absence of Ca. Several T3SS regulatory proteins modulate the LCR, because their absence promotes a Ca-blind phenotype in which growth at 37 °C ceases and the T3SS is constitutive even with added Ca. This study analysed the connection between the LCR and Ca by determining the response of selected Ca-blind mutants grown in Ca-deficient rescue media containing Na plus -glutamate (pH 5.5), where the T3SS is not expressed, -glutamate alone (pH 6.5), where -aspartate is fully catabolized, and Na alone (pH 9.0), where the electrogenic sodium pump NADH : ubiquinone oxidoreductase becomes activated. All three conditions supported essentially full-scale Ca-independent growth at 37 °C of wild-type as well as and mutants (possessing a complete but dysregulated T3SS), indicating that bacteriostasis reflects a Na-dependent lesion in bioenergetics. In contrast, mutants lacking the negative regulator YopD or the YopD chaperone (LcrH) failed to grow in any rescue medium and are therefore truly temperature-sensitive. The Ca-blind phenotype was fully suppressed in a Ca-independent background lacking the injectisome-associated inner-membrane component YscV but not peripheral YscK, suggesting that the core translocon energizes YopD.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.028852-0
2009-08-01
2021-05-11
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/8/2509.html?itemId=/content/journal/micro/10.1099/mic.0.028852-0&mimeType=html&fmt=ahah

References

  1. Achtman M., Zurth K., Morelli G., Torrea G., Guiyoule A., Carniel E. 1999; Yersinia pestis, the cause of plague, is a recently emerged clone of Yersinia pseudotuberculosis . Proc Natl Acad Sci U S A 96:14043–14048
    [Google Scholar]
  2. Anderson D. M., Ramamurthi K. S., Tam C., Schneewind O. 2002; YopD and LcrH regulate expression of Yersinia enterocolitica YopQ by a posttranscriptional mechanism and bind to yopQ RNA. J Bacteriol 184:1287–1295
    [Google Scholar]
  3. Beesley E. D., Brubaker R. R., Janssen W. A., Surgalla M. J. 1967; Pesticins. III. Expression of coagulase and mechanism of fibrinolysis. J Bacteriol 94:19–26
    [Google Scholar]
  4. Brubaker R. R. 1967; Growth of Pasteurella pseudotuberculosis in simulated intracellular and extracellular environments. J Infect Dis 117:403–417
    [Google Scholar]
  5. Brubaker R. R. 2005; Influence of Na+, dicarboxylic amino acids, and pH in modulating the low-calcium response of Yersinia pestis . Infect Immun 73:4743–4752
    [Google Scholar]
  6. Brubaker R. R. 2007; Intermediary metabolism, Na+, the low calcium-response, and acute disease. In The Genus Yersinia: From Genomics to Function pp 116–129 Edited by Perry R. D. New York: Springer;
    [Google Scholar]
  7. Brubaker R. R., Surgalla M. J. 1962; Pesticins II. Production of pesticin I and II. J Bacteriol 84:539–545
    [Google Scholar]
  8. Brubaker R. R., Surgalla M. J. 1964; The effect of Ca++ and Mg++ on lysis, growth, and production of virulence antigens by Pasteurella pestis . J Infect Dis 114:13–25
    [Google Scholar]
  9. Brubaker R. R., Sample A. K., Yu D.-Z., Zahorchak R. J., Hu P. C., Fowler J. M. 1987; Proteolysis of V antigen from Yersinia pestis . Microb Pathog 2:49–62
    [Google Scholar]
  10. Carter P. B., Zahorchak R. J., Brubaker R. R. 1980; Plague virulence antigens from Yersinia enterocolitica . Infect Immun 28:638–640
    [Google Scholar]
  11. Chain P. S., Carniel E., Larimer F. W., Lamerdin J., Stoutland P. O., Regala W. M., Georgescu A. M., Vergez L. M., Land M. L. other authors 2004; Insights into the evolution of Yersinia pestis through whole-genome comparison with Yersinia pseudotuberculosis . Proc Natl Acad Sci U S A 101:13826–13831
    [Google Scholar]
  12. Cheng L. W., Kay O., Schneewind O. 2001; Regulated secretion of YopN by the type III machinery of Yersinia enterocolitica . J Bacteriol 183:5293–5301
    [Google Scholar]
  13. Cornelis G. R., Wolf-Watz H. 1997; The Yersinia Yop virulon: a bacterial system for subverting eukaryotic cells. Mol Microbiol 23:861–867
    [Google Scholar]
  14. Cornelis G., Sluiters C., Lambert de Rouvroit C., Michiels T. 1989; Homology between VirF, the transcriptional activator of the Yersinia virulence regulon, and AraC, the Escherichia coli arabinose operon regulator. J Bacteriol 171:254–262
    [Google Scholar]
  15. Cornelis G. R., Sluiters C., Delor I., Geib D., Kaniga K., Lambert de Rouvroit C., Sory M. P., Vanooteghem J. C., Michiels T. 1991; ymoA, a Yersinia enterocolitica chromosomal gene modulating the expression of virulence functions. Mol Microbiol 5:1023–1034
    [Google Scholar]
  16. Deguchi Y., Yamato I., Anraku Y. 1989; Molecular cloning of gltS and gltP, which encode glutamate carriers of Escherichia coli B. J Bacteriol 171:1314–1319
    [Google Scholar]
  17. Deng W., Burland V., Plunkett G. I. 3rd, Boutin A., Mayhew G. F., Liss P., Perna N. T., Rose D. J., Mau B. other authors 2002; Genome sequence of Y. pestis KIM. J Bacteriol 184:4601–4611
    [Google Scholar]
  18. Dreyfus L. A., Brubaker R. R. 1978; Consequences of aspartase deficiency in Yersinia pestis . J Bacteriol 136:757–764
    [Google Scholar]
  19. Ferber D. M., Brubaker R. R. 1981; Plasmids in Yersinia pestis . Infect Immun 31:839–841
    [Google Scholar]
  20. Ferracci F., Schubot F. D., Waugh D. S., Plano G. V. 2005; Selection and characterization of Yersinia pestis YopN mutants that constitutively block Yop secretion. Mol Microbiol 57:970–987
    [Google Scholar]
  21. Fields K. A., Plano G. V., Straley S. C. 1994; A low-Ca2+ response (LCR) secretion ( ysc) locus lies within the lcrB region of the LCR plasmid in Yersinia pestis . J Bacteriol 176:569–579
    [Google Scholar]
  22. Fields K. A., Nilles M. L., Cowan C., Straley S. C. 1999; Virulence role of V antigen of Yersinia pestis at the bacterial surface. Infect Immun 67:5395–5408
    [Google Scholar]
  23. Finegold M. J., Petery R. F., Berendt R. F., Adams H. R. 1968; Studies on the pathogenesis of plague. Blood coagulation and tissue responses of Macaca mulatta following exposure to aerosols of Pasteurella pestis . Am J Pathol 53:99–114
    [Google Scholar]
  24. Fowler J. M., Brubaker R. R. 1994; Physiological basis of the low calcium response in Yersinia pestis . Infect Immun 62:5234–5241
    [Google Scholar]
  25. Francis M. S., Lloyd S. A., Wolf-Watz H. 2001; The type III secretion chaperone LcrH co-operates with YopD to establish a negative, regulatory loop for control of Yop synthesis in Yersinia pseudotuberculosis . Mol Microbiol 42:1075–1093
    [Google Scholar]
  26. Goguen J. D., Yother J., Straley S. C. 1984; Genetic analysis of the low calcium response in Yersinia pestis Mu d1(Ap lac) insertion mutants. J Bacteriol 160:842–848
    [Google Scholar]
  27. Guzman L. M., Belin G., Carson M. J., Beckwith J. 1995; Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. J Bacteriol 177:4121–4130
    [Google Scholar]
  28. Hall P. J., Yang G. C. H., Little R. V., Brubaker R. R. 1974; Effect of Ca2+ on morphology and division of Yersinia pestis . Infect Immun 9:1105–1113
    [Google Scholar]
  29. Higuchi K., Smith J. L. 1961; Studies on the nutrition and physiology of Pasteurella pestis: VI. A differential plating medium for the estimation of the mutation rate to avirulence. J Bacteriol 81:605–608
    [Google Scholar]
  30. Higuchi K., Kupferberg L. L., Smith J. L. 1959; Studies on the nutrition and physiology of Pasteurella pestis. III. Effects of calcium ions on the growth of virulent and avirulent strains of Pasteurella pestis . J Bacteriol 77:317–321
    [Google Scholar]
  31. Hoe N. P., Goguen J. D. 1993; Temperature sensing in Yersinia pestis: translation of the LcrF activator protein is thermally regulated. J Bacteriol 175:7901–7909
    [Google Scholar]
  32. Hu P., Elliott J., McCready P., Skowronski E., Garnes J., Kobayashi A., Brubaker R. R., Garcia E. 1998; Structural organization of virulence-associated plasmids of Yersinia pestis . J Bacteriol 180:5192–5202
    [Google Scholar]
  33. Kalman M., Gentry D. R., Cashel M. 1991; Characterization of the Escherichia coli K12 gltS glutamate permease gene. Mol Gen Genet 225:379–386
    [Google Scholar]
  34. Kugelmass I. N. 1959 Biochemistry of Blood in Health and Disease Springfield, IL: Charles C. Thomas, Inc;
    [Google Scholar]
  35. Kupferberg L. L., Higuchi K. 1958; Role of calcium ions in the stimulation of growth of virulent strains of Pasteurella pestis . J Bacteriol 76:120–121
    [Google Scholar]
  36. MacDonald R. E., Lanyi J. K., Greene R. V. 1977; Sodium-stimulated glutamate uptake in membrane vesicles of Escherichia coli: the role of ion gradients. Proc Natl Acad Sci U S A 74:3167–3170
    [Google Scholar]
  37. Matson J. S., Nilles M. L. 2001; LcrG–LcrV interaction is required for control of Yops secretion in Yersinia pestis . J Bacteriol 183:5082–5091
    [Google Scholar]
  38. McMurry J. L., Van Arnam J. S., Kihara M., Macnab R. M. 2004; Analysis of the cytoplasmic domains of Salmonella FlhA and interactions with components of the flagellar export machinery. J Bacteriol 186:7586–7592
    [Google Scholar]
  39. Medini D., Covacci A., Donati C. 2006; Protein homology network families reveal step-wise diversification of Type III and Type IV secretion systems. PLOS Comput Biol 2:e173
    [Google Scholar]
  40. Metcalf W. W., Jiang W., Daniels L. L., Kim S.-K., Haldimann A., Wanner B. L. 1996; Conditionally replicative and congugative plasmids carrying lacZα for cloning, mutagenesis, and allele replacement in bacteria. Plasmid 35:1–13
    [Google Scholar]
  41. Miller V. L., Mekalanos J. J. 1988; A novel suicide vector and its use in construction of insertion mutations: osmoregulation of outer membrane proteins and virulence determinants in Vibrio cholerae requires toxR . J Bacteriol 170:2575–2583
    [Google Scholar]
  42. Minamino T., Macnab R. M. 2000; Domain structure of Salmonella FlhB, a flagellar export component responsible for substrate specificity switching. J Bacteriol 182:4906–4914
    [Google Scholar]
  43. Moore R. L., Brubaker R. R. 1975; Hybridization of deoxyribonucleotide sequences of Yersinia enterocolitica and other selected members of Enterobacteriaceae . Int J Syst Bacteriol 25:336–339
    [Google Scholar]
  44. Motin V. L., Nakajima R., Smirvov G. B., Brubaker R. R. 1994; Passive immunity to yersiniae mediated by anti-recombinant V antigen and protein A–V antigen fusion peptide. Infect Immun 62:4192–4201
    [Google Scholar]
  45. Nilles M. L., Williams A. W., Skrzypek E., Straley S. C. 1997; Yersinia pestis LcrV forms a stable complex with LcrG and may have a secretion-related regulatory role in the low-Ca2+ response. J Bacteriol 179:1307–1316
    [Google Scholar]
  46. Nilles M. L., Fields K. A., Straley S. C. 1998; The V antigen of Yersinia pestis regulates Yop vectorial targeting as well as Yop secretion through effects on YopB and LcrG. J Bacteriol 180:3410–3420
    [Google Scholar]
  47. Parkhill J., Wren B. W., Thomson N. R., Titball R. W., Holden M. T., Prentice M. B., Sebaihia M., James K. D., Churcher C. other authors 2001; Genome sequence of Yersinia pestis, the causative agent of plague. Nature 413:523–527
    [Google Scholar]
  48. Perry R. D., Brubaker R. R. 1987; Transport of Ca2+ by Yersinia pestis . J Bacteriol 169:4861–4864
    [Google Scholar]
  49. Plano G. V., Straley S. C. 1993; Multiple effects of lcrD mutations in Yersinia pestis . J Bacteriol 175:3536–3545
    [Google Scholar]
  50. Plano G. V., Straley S. C. 1995; Mutations in yscC, yscD, and yscG prevent high-level expression and secretion of V antigen and Yops in Yersinia pestis . J Bacteriol 177:3843–3854
    [Google Scholar]
  51. Plano G. V., Barve S. S., Straley S. C. 1991; LcrD, a membrane-bound regulator of the Yersinia pestis low-calcium response. J Bacteriol 173:7293–7303
    [Google Scholar]
  52. Portnoy D. A., Moseley S. L., Falkow S. 1981; Characterization of plasmids and plasmid-associated determinants of Yersinia enterocolitica pathogenesis. Infect Immun 31:775–782
    [Google Scholar]
  53. Price S. B., Straley S. C. 1989; lcrH, a gene necessary for virulence of Yersinia pestis and for the normal response of Y. pestis to ATP and calcium. Infect Immun 57:1491–1498
    [Google Scholar]
  54. Price S. B., Cowan C., Perry R. D., Straley S. C. 1991; The V antigen is a regulator protein necessary for the Ca2+-dependent growth and the maximal expression of low Ca2+-response virulence genes in Yersinia pestis . J Bacteriol 173:2649–2657
    [Google Scholar]
  55. Protsenko O. A., Anisimov P. I., Mosarov O. T., Donnov N. P., Popov Y. A., Kokushkin A. M. 1983; Detection and characterization of Yersinia pestis plasmids determining pesticin I, fraction 1 antigen and mouse toxin synthesis. Genetika 19:1081–1090
    [Google Scholar]
  56. Rosqvist R., Magnusson K. E., Wolf-Watz H. 1994; Target cell contact triggers expression and polarized transfer of Yersinia YopE cytotoxin into mammalian cells. EMBO J 13:964–972
    [Google Scholar]
  57. Sample A. K., Fowler J. M., Brubaker R. R. 1987; Modulation of the low calcium response in Yersinia pestis by plasmid–plasmid interaction. Microb Pathog 2:443–453
    [Google Scholar]
  58. Schellenberg G. D., Furlong C. E. 1977; Resolution of the multiplicity of the glutamate and aspartate transport systems of Escherichia coli . J Biol Chem 252:9055–9064
    [Google Scholar]
  59. Straley S. C., Bowmer W. S. 1986; Virulence genes regulated at the transcriptional level by Ca2+ in Yersinia pestis include structural genes for outer membrane proteins. Infect Immun 51:445–454
    [Google Scholar]
  60. Straley S. C., Brubaker R. R. 1981; Cytoplasmic and membrane proteins of yersiniae cultivated under conditions simulating mammalian intracellular environment. Proc Natl Acad Sci U S A 78:1224–1228
    [Google Scholar]
  61. Torruellas J., Jackson M. W., Pennock J. W., Plano G. V. 2005; The Yersinia pestis type III secretion needle plays a role in the regulation of Yop secretion. Mol Microbiol 57:1719–1733
    [Google Scholar]
  62. Wattiau P. B., Bernier P., Deslée P., Michiels T., Cornelis G. 1994; Individual chaperones required for Yop secretion by Yersinia . Proc Natl Acad Sci U S A 91:10493–10497
    [Google Scholar]
  63. Wilharm G., Lehmann V., Krauss K., Lehnert B., Richter S., Ruckdeschel K., Heesemann J., Trülzsch K. 2004; Yersinia enterocolitica type III secretion depends on the proton motive force but not on the flagellar motor components MotA and MotB. Infect Immun 72:4004–4009
    [Google Scholar]
  64. Williams A. W., Straley S. C. 1998; YopD of Yersinia pestis plays a role in negative regulation of the low-calcium response in addition to its role in translocation of Yops. J Bacteriol 180:350–358
    [Google Scholar]
  65. Wulff-Strobel C. R., Williams A. W., Straley S. C. 2002; LcrQ and SycH function together at the Ysc type III secretion system in Y ersinia pestis to impose a hierarchy of secretion. Mol Microbiol 43:411–423
    [Google Scholar]
  66. Zahorchak R. J., Brubaker R. R. 1982; Effect of exogenous nucleotides on Ca2+ dependence and V antigen synthesis in Yersinia pestis . Infect Immun 38:953–959
    [Google Scholar]
  67. Zahorchak R. J., Charnetzky W. T., Little R. V., Brubaker R. R. 1979; Consequences of Ca2+ deficiency on macromolecular synthesis and adenylate energy charge in Yersinia pestis . J Bacteriol 139:792–799
    [Google Scholar]
  68. Zhou W., Bertsova Y. V., Feng B., Tsatsos P., Verkhovskaya M. I., Gennis R. B., Bogachev A. V., Barquera B. 1999; Sequencing and preliminary characterization of the Na+-translocating NADH : ubiquinone oxidoreductase from Vibrio harveyi . Biochemistry 38:16246–16252
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.028852-0
Loading
/content/journal/micro/10.1099/mic.0.028852-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error