1887

Abstract

The interaction with the host plasminogen/plasmin system represents a novel component in the molecular cross-talk between bifidobacteria and human host. Here, we demonstrated that the plasminogen-binding bifidobacterial species , , and share the key glycolytic enzyme enolase as a surface receptor for human plasminogen. Enolase was visualized on the cell surface of the model strain BI07. The His-tagged recombinant protein showed a high affinity for human plasminogen, with an equilibrium dissociation constant in the nanomolar range. By site-directed mutagenesis we demonstrated that the interaction between the BI07 enolase and human plasminogen involves an internal plasminogen-binding site homologous to that of pneumococcal enolase. According to our data, the positively charged residues Lys-251 and Lys-255, as well as the negatively charged Glu-252, of the BI07 enolase are crucial for plasminogen binding. Acting as a human plasminogen receptor, the bifidobacterial surface enolase is suggested to play an important role in the interaction process with the host.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.028795-0
2009-10-01
2020-01-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/10/3294.html?itemId=/content/journal/micro/10.1099/mic.0.028795-0&mimeType=html&fmt=ahah

References

  1. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. ( 1990; ). Basic local alignment search tool. J Mol Biol 215, 403–410.[CrossRef]
    [Google Scholar]
  2. Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, Z., Miller, W. & Lipman, D. J. ( 1997; ). Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25, 3389–3402.[CrossRef]
    [Google Scholar]
  3. Antikainen, J., Kuparinen, V., Lähteenmäki, K. & Korhonen, T. K. ( 2007a; ). Enolases from Gram-positive bacterial pathogens and commensal lactobacilli share functional similarity in virulence-associated traits. FEMS Immunol Med Microbiol 51, 526–534.[CrossRef]
    [Google Scholar]
  4. Antikainen, J., Hurmalainen, V., Lähteenmäki, K. & Korhonen, T. K. ( 2007b; ). pH-dependent association of enolase and GAPDH of Lactobacillus crispatus with the cell wall and lipoteichoic acid. J Bacteriol 189, 4539–4543.[CrossRef]
    [Google Scholar]
  5. Bergmann, S. & Hammerschmidt, S. ( 2007; ). Fibrinolysis and host response in bacterial infections. Thromb Haemost 98, 512–520.
    [Google Scholar]
  6. Bergmann, S., Rohde, M., Chhatwal, G. S. & Hammerschmidt, S. ( 2001; ). α-Enolase of Streptococcus pneumoniae is a plasmin(ogen)-binding protein displayed on the bacterial cell surface. Mol Microbiol 40, 1273–1287.[CrossRef]
    [Google Scholar]
  7. Bergmann, S., Wild, D., Diekmann, O., Frank, R., Bracht, D., Chhatwal, G. S. & Hammerschmidt, S. ( 2003; ). Identification of a novel plasmin(ogen)-binding motif in surface displayed alpha-enolase of Streptococcus pneumoniae. Mol Microbiol 49, 411–423.[CrossRef]
    [Google Scholar]
  8. Bergmann, S., Rohde, M., Preissner, K. T. & Hammerschmidt, S. ( 2005; ). The nine residue plasminogen-binding motif of the pneumococcal enolase is the major cofactor of plasmin-mediated degradation of extracellular matrix, dissolution of fibrin and transmigration. Thromb Haemost 94, 304–311.
    [Google Scholar]
  9. Boël, G., Pichereau, V., Mijakovic, I., Mazé, A., Poncet, S., Gilet, S., Giard, J. C., Hartke, A., Auffray, Y. & Deutscher, J. ( 2004; ). Is 2-phosphoglycerate-dependent automodification of bacterial enolases implicated in their export? J Mol Biol 337, 485–496.[CrossRef]
    [Google Scholar]
  10. Candela, M., Bergmann, S., Vici, M., Vitali, B., Turroni, S., Eikmanns, B. J., Hammerschmidt, S. & Brigidi, P. ( 2007; ). Binding of human plasminogen to Bifidobacterium. J Bacteriol 189, 5929–5936.[CrossRef]
    [Google Scholar]
  11. Candela, M., Miccoli, G., Bergmann, S., Turroni, S., Vitali, B., Hammerschmidt, S. & Brigidi, P. ( 2008; ). Plasminogen-dependent proteolytic activity in Bifidobacterium lactis. Microbiology 154, 2457–2462.[CrossRef]
    [Google Scholar]
  12. Castaldo, C., Vastano, V., Siciliano, R. A., Candela, M., Vici, M., Muscariello, L., Marasco, R. & Sacco, M. ( 2009; ). Surface displaced alfa-enolase of Lactobacillus plantarum is a fibronectin binding protein. Microb Cell Fact 8, 14 [CrossRef]
    [Google Scholar]
  13. Claverys, J. P. & Havarstein, L. S. ( 2007; ). Cannibalism and fratricide: mechanisms and raisons d'être. Nat Rev Microbiol 5, 219–229.[CrossRef]
    [Google Scholar]
  14. Collen, D. & Verstraete, M. ( 1975; ). Molecular biology of human plasminogen. II. Metabolism in physiological and some pathological conditions in man. Thromb Diath Haemorrh 34, 403–408.
    [Google Scholar]
  15. Crowe, J. D., Sievwright, I. K., Auld, G. C., Moore, N. R., Gow, N. A. & Booth, N. A. ( 2003; ). Candida albicans binds human plasminogen: identification of eight plasminogen-binding proteins. Mol Microbiol 47, 1637–1651.[CrossRef]
    [Google Scholar]
  16. Cuff, J. A., Clamp, M. E., Siddiqui, A. S., Finlay, M. & Barton, G. J. ( 1998; ). JPRED: a consensus secondary structure prediction server. Bioinformatics 14, 892–893.[CrossRef]
    [Google Scholar]
  17. Derbise, A., Song, Y. P., Parikh, S., Fischetti, V. A. & Pancholi, V. ( 2004; ). Role of the C-terminal lysine residues of streptococcal surface enolase in Glu- and Lys-plasminogen-binding activities of group A streptococci. Infect Immun 72, 94–105.[CrossRef]
    [Google Scholar]
  18. Ehinger, S., Schubert, W. D., Bergmann, S., Hammerschmidt, S. & Heinz, D. W. ( 2004; ). Plasmin(ogen)-binding alpha-enolase from Streptococcus pneumoniae: crystal structure and evaluation of plasmin(ogen)-binding sites. J Mol Biol 343, 997–1005.[CrossRef]
    [Google Scholar]
  19. Esgleas, M., Li, Y., Hancock, M. A., Harel, J., Dubreuil, J. D. & Gottschalk, M. ( 2008; ). Isolation and characterization of alpha-enolase, a novel fibronectin-binding protein from Streptococcus suis. Microbiology 154, 2668–2679.[CrossRef]
    [Google Scholar]
  20. Guarner, F. & Malagelada, J. R. ( 2003; ). Gut flora in health and disease. Lancet 361, 512–519.[CrossRef]
    [Google Scholar]
  21. Hurmalainen, V., Edelman, S., Antikainen, J., Baumann, M., Lähteenmäki, K. & Korhonen, T. K. ( 2007; ). Extracellular proteins of Lactobacillus crispatus enhance activation of human plasminogen. Microbiology 153, 1112–1122.[CrossRef]
    [Google Scholar]
  22. Jeffery, C. J. ( 1999; ). Moonlighting proteins. Trends Biochem Sci 24, 8–11.[CrossRef]
    [Google Scholar]
  23. Klijn, A., Mercenier, A. & Arigoni, F. ( 2005; ). Lessons from the genomes of bifidobacteria. FEMS Microbiol Rev 29, 491–509.[CrossRef]
    [Google Scholar]
  24. Knaust, A., Weber, M. V., Hammerschmidt, S., Bergmann, S., Frosch, M. & Kurzai, O. ( 2007; ). Cytosolic proteins contribute to surface plasminogen recruitment of Neisseria meningitidis. J Bacteriol 189, 3246–3255.[CrossRef]
    [Google Scholar]
  25. Kolberg, J., Aase, A., Bergmann, S., Herstad, T. K., Rødal, G., Frank, R., Rohde, M. & Hammerschmidt, S. ( 2006; ). Streptococcus pneumoniae enolase is important for plasminogen binding despite low abundance of enolase protein on the bacterial cell surface. Microbiology 152, 1307–1317.[CrossRef]
    [Google Scholar]
  26. Lähteenmäki, K., Edelman, S. & Korhonen, T. K. ( 2005; ). Bacterial metastasis: the host plasminogen system in bacterial invasion. Trends Microbiol 13, 79–85.[CrossRef]
    [Google Scholar]
  27. Laskowski, R. A., MacArthur, M. W., Moss, D. S. & Thornton, J. M. ( 1993; ). PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Crystallograph 26, 283–291.[CrossRef]
    [Google Scholar]
  28. Lee, J. H., Kang, H. K., Moon, Y. H., Cho, D. L., Kim, D., Choe, J. Y., Honzatko, R. & Robyt, J. F. ( 2006; ). Cloning, expression and characterization of an extracellular enolase from Leuconostoc mesenteroides. FEMS Microbiol Lett 259, 240–248.[CrossRef]
    [Google Scholar]
  29. Marti-Renom, M. A., Stuart, A. C., Fiser, A., Sanchez, R., Melo, F. & Sali, A. ( 2000; ). Comparative protein structure modeling of genes and genomes. Annu Rev Biophys Biomol Struct 29, 291–325.[CrossRef]
    [Google Scholar]
  30. Pancholi, V. ( 2001; ). Multifunctional α-enolase: its role in diseases. Cell Mol Life Sci 58, 902–920.[CrossRef]
    [Google Scholar]
  31. Pancholi, V. & Chhatwal, G. S. ( 2003; ). Housekeeping enzymes as virulence factors for pathogens. Int J Med Microbiol 293, 391–401.[CrossRef]
    [Google Scholar]
  32. Pancholi, V. & Fischetti, V. A. ( 1998; ). Alpha-enolase, a novel strong plasmin(ogen) binding protein on the surface of pathogenic streptococci. J Biol Chem 273, 14503–14515.[CrossRef]
    [Google Scholar]
  33. Parkkinen, J. & Korhonen, T. K. ( 1989; ). Binding of plasminogen to Escherichia coli adhesion proteins. FEBS Lett 250, 437–440.[CrossRef]
    [Google Scholar]
  34. Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C. & Ferrin, T. E. ( 2004; ). UCSF chimera – a visualization system for exploratory research and analysis. J Comput Chem 25, 1605–1612.[CrossRef]
    [Google Scholar]
  35. Redlitz, A., Fowler, B. J., Plow, E. F. & Miles, L. A. ( 1995; ). The role of an enolase-related molecule in plasminogen binding to cells. Eur J Biochem 227, 407–415.[CrossRef]
    [Google Scholar]
  36. Saksela, O. & Rifkin, D. B. ( 1988; ). Cell-associated plasminogen activation: regulation and physiological functions. Annu Rev Cell Biol 4, 93–126.[CrossRef]
    [Google Scholar]
  37. Sanderson-Smith, M. L., Walker, M. J. & Ranson, M. ( 2006; ). The maintenance of high affinity plasminogen binding by group A streptococcal plasminogen-binding M-like protein is mediated by arginine and histidine residues within the a1 and a2 repeat domains. J Biol Chem 281, 25965–25971.[CrossRef]
    [Google Scholar]
  38. Sanderson-Smith, M. L., Dowton, M., Ranson, M. & Walker, M. J. ( 2007; ). The plasminogen-binding group A streptococcal M protein-related protein Prp binds plasminogen via arginine and histidine residues. J Bacteriol 189, 1435–1440.[CrossRef]
    [Google Scholar]
  39. Schaumburg, J., Diekmann, O., Hagendorff, P., Bergmann, S., Rohde, M., Hammerschmidt, S., Jansch, L., Wehland, J. & Karst, U. ( 2004; ). The cell wall subproteome of Listeria monocytogenes. Proteomics 4, 2991–3006.[CrossRef]
    [Google Scholar]
  40. Schell, M. A., Karmirantzou, M., Snel, B., Vilanova, D., Berger, B., Pessi, G., Zwahlen, M. C., Desire, F., Bork, P. & other authors ( 2002; ). The genome sequence of Bifidobacterium longum reflects its adaptation to the human gastrointestinal tract. Proc Natl Acad Sci U S A 99, 14422–14427.[CrossRef]
    [Google Scholar]
  41. Shevchenko, A., Wilm, M., Vorm, O. & Mann, M. ( 1996; ). Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Anal Chem 68, 850–858.[CrossRef]
    [Google Scholar]
  42. Sijbrandi, R., Den Blaauwen, T., Tame, J. R. H., Oudega, B., Luirink, J. & Otto, B. R. ( 2005; ). Characterization of an iron-regulated alpha-enolase of Bacteroides fragilis. Microbes Infect 7, 9–18.[CrossRef]
    [Google Scholar]
  43. Thompson, J. D., Higgins, D. G. & Gibson, T. J. ( 1994; ). clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22, 4673–4680.[CrossRef]
    [Google Scholar]
  44. Vassalli, J. D., Sappino, A. P. & Belin, D. ( 1991; ). The plasminogen activator/plasmin system. J Clin Invest 88, 1067–1072.[CrossRef]
    [Google Scholar]
  45. Ventura, M., O'Connell-Motherway, M., Leahy, S., Moreno-Munoz, J. A., Fitzgerald, G. F. & van Sinderen, D. ( 2007; ). From bacterial genome to functionality; case bifidobacteria. Int J Food Microbiol 120, 2–12.[CrossRef]
    [Google Scholar]
  46. Ventura, M., O'Flaherty, S., Claesson, M. J., Turroni, F., Klaenhammer, T. R., van Sinderen, D. & O'Toole, P. W. ( 2009; ). Genome-scale analyses of health-promoting bacteria: probiogenomics. Nat Rev Microbiol 7, 61–71.[CrossRef]
    [Google Scholar]
  47. Willard, L., Ranjan, A., Zhang, H., Monzavi, H., Boyko, R. F., Sykes, B. D. & Wishart, D. S. ( 2003; ). VADAR: a web server for quantitative evaluation of protein structure quality. Nucleic Acids Res 31, 3316–3319.[CrossRef]
    [Google Scholar]
  48. Zambelli, B., Turano, P., Musiani, F., Neyroz, P. & Ciurli, S. ( 2009; ). Zn2+-linked dimerization of UreG from Helicobacter pylori, a chaperone involved in nickel trafficking and urease activation. Proteins 74, 222–239.[CrossRef]
    [Google Scholar]
  49. Zhang, L., Seiffert, D., Fowler, B. J., Jenkins, G. R., Thinnes, T. C., Loskutoff, D. J., Parmer, R. J. & Miles, L. A. ( 2002; ). Plasminogen has a broad extrahepatic distribution. Thromb Haemost 87, 493–501.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.028795-0
Loading
/content/journal/micro/10.1099/mic.0.028795-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error