1887

Abstract

Carnitine is a quaternary amine compound prevalent in animal tissues, and a potential carbon, nitrogen and energy source for pathogens during infection. Characterization of activities in cell lysates has previously shown that carnitine is converted to 3-dehydrocarnitine (3-dhc) which is in turn metabolized to glycine betaine (GB), an intermediate metabolite in the catabolism of carnitine to glycine. However, the identities of the enzymes required for carnitine catabolism were not known. We used a genetic screen of the PA14 transposon mutant library to identify genes required for growth on carnitine. We identified two genomic regions and their adjacent transcriptional regulators that are required for carnitine catabolism. The region contains the predicted carnitine dehydrogenase homologue along with other genes required for growth on carnitine. The second region identified, , encodes the and subunits of a predicted 3-ketoacid CoA-transferase, an enzymic activity hypothesized to be involved in the first step of deacetylation of 3-dhc. Furthermore, we confirmed that an intact GB catabolic pathway is required for growth on carnitine. The PA5389 and PA1998 transcription factors are required for growth on carnitine. PA5389 is required for induction of the transcripts in response to carnitine, and the transcripts are induced in a PA1998-dependent manner and induction appears to depend on a carnitine catabolite, possibly 3-dhc. These results provide important insight into elements required for carnitine catabolism in and probably in other bacteria.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.028787-0
2009-07-01
2019-11-17
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/7/2411.html?itemId=/content/journal/micro/10.1099/mic.0.028787-0&mimeType=html&fmt=ahah

References

  1. Aurich, H. & Lorenz, I. ( 1959; ). On the catabolism of carnitine by Pseudomonas pyocyanea. Acta Biol Med Ger 3, 272–275.
    [Google Scholar]
  2. Aurich, H., Kleber, H. P. & Schopp, W. D. ( 1967; ). An inducible carnitine dehydrogenase from Pseudomonas aeruginosa. Biochim Biophys Acta 139, 505–507.[CrossRef]
    [Google Scholar]
  3. Aurich, H., Kleber, H. P., Sorger, H. & Tauchert, H. ( 1968; ). Purification and properties of carnitine dehydrogenase from Pseudomonas aeruginosa. Eur J Biochem 6, 196–201.[CrossRef]
    [Google Scholar]
  4. Bremer, J. ( 1983; ). Carnitine – metabolism and functions. Physiol Rev 63, 1420–1480.
    [Google Scholar]
  5. Burnet, M. W., Goldmann, A., Message, B., Drong, R., El Amrani, A., Loreau, O., Slightom, J. & Tepfer, D. ( 2000; ). The stachydrine catabolism region in Sinorhizobium meliloti encodes a multi-enzyme complex similar to the xenobiotic degrading systems in other bacteria. Gene 244, 151–161.[CrossRef]
    [Google Scholar]
  6. Choi, K.-H., Kumar, A. & Schweizer, H. P. ( 2006; ). A 10-min method for preparation of highly electrocompetent Pseudomonas aeruginosa cells: application for DNA fragment transfer between chromosomes and plasmid transformation. J Microbiol Methods 64, 391–397.[CrossRef]
    [Google Scholar]
  7. Engeser, H., Hubner, K., Straub, J. & Lynen, F. ( 1979; ). Identity of malonyl and palmitoyl transferase of fatty acid synthetase from yeast. Functional interrelationships between the acyl transferases. Eur J Biochem 101, 407–412.[CrossRef]
    [Google Scholar]
  8. Goldmann, A., Boivin, C., Fleury, V., Message, B., Lecoeur, L., Maille, M. & Tepfer, D. ( 1991; ). Betaine use by rhizosphere bacteria: genes essential for trigonelline, stachydrine, and carnitine catabolism in Rhizobium meliloti are located on pSym in the symbiotic region. Mol Plant Microbe Interact 4, 571–578.[CrossRef]
    [Google Scholar]
  9. Goulas, P. ( 1988; ). Purification and properties of carnitine dehydrogenase from Pseudomonas putida. Biochim Biophys Acta 957, 335–339.[CrossRef]
    [Google Scholar]
  10. Houriyou, K., Takahashi, M., Mizoguchi, J. & Imamura, S. ( 1991; ). Essentially pure microorganism capable of producing carnitine dehydrogenase. Patent no. 1993161492-A/1 (Japan).
  11. Jacobs, M. A., Alwood, A., Thaipisuttikul, I., Spencer, D., Haugen, E., Ernst, S., Will, O., Kaul, R., Raymond, C. & other authors ( 2003; ). Comprehensive transposon mutant library of Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 100, 14339–14344.[CrossRef]
    [Google Scholar]
  12. Kleber, H. P. & Aurich, H. ( 1967; ). Evidence for an inducible active transport of carnitine in Pseudomonas aeruginosa. Biochem Biophys Res Commun 26, 255–260.[CrossRef]
    [Google Scholar]
  13. Kuchma, S. L., Connolly, J. P. & O'Toole, G. A. ( 2005; ). A three-component regulatory system regulates biofilm maturation and type III secretion in Pseudomonas aeruginosa. J Bacteriol 187, 1441–1454.[CrossRef]
    [Google Scholar]
  14. Liberati, N. T., Urbach, J. M., Miyata, S., Lee, D. G., Drenkard, E., Wu, G., Villanueva, J., Wei, T. & Ausubel, F. M. ( 2006; ). An ordered, nonredundant library of Pseudomonas aeruginosa strain PA14 transposon insertion mutants. Proc Natl Acad Sci U S A 103, 2833–2838.[CrossRef]
    [Google Scholar]
  15. Lindstedt, G., Lindstedt, S., Midtvedt, T. & Tofft, M. ( 1967; ). The formation and degradation of carnitine in Pseudomonas. Biochemistry 6, 1262–1270.[CrossRef]
    [Google Scholar]
  16. Meskys, R., Harris, R. J., Casaite, V., Basran, J. & Scrutton, N. S. ( 2001; ). Organization of the genes involved in dimethylglycine and sarcosine degradation in Arthrobacter spp.: implications for glycine betaine catabolism. Eur J Biochem 268, 3390–3398.[CrossRef]
    [Google Scholar]
  17. Miller, J. H. ( 1972; ). Experiments in Molecular Genetics. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  18. Mori, N., Shirota, K., Kitamoto, Y. & Ichikawa, Y. ( 1988; ). Cloning and expression in Escherichia coli of the carnitine dehydrogenase gene from Xanthomonas translucens. Agric Biol Chem 52, 851–852.[CrossRef]
    [Google Scholar]
  19. Neidhardt, F. C., Bloch, P. L. & Smith, D. F. ( 1974; ). Culture medium for enterobacteria. J Bacteriol 119, 736–747.
    [Google Scholar]
  20. Park, S. M., Lu, C. D. & Abdelal, A. T. ( 1997; ). Cloning and characterization of argR, a gene that participates in regulation of arginine biosynthesis and catabolism in Pseudomonas aeruginosa PAO1. J Bacteriol 179, 5300–5308.
    [Google Scholar]
  21. Peluso, G., Barbarisi, A., Savica, V., Reda, E., Nicolai, R., Benatti, P. & Calvani, M. ( 2000; ). Carnitine: an osmolyte that plays a metabolic role. J Cell Biochem 80, 1–10.
    [Google Scholar]
  22. Rahme, L. G., Stevens, E. J., Wolfort, S. F., Shao, J., Tompkins, R. G. & Ausubel, F. M. ( 1995; ). Common virulence factors for bacterial pathogenicity in plants and animals. Science 268, 1899–1902.[CrossRef]
    [Google Scholar]
  23. Schweizer, H. P. ( 1991; ). EscherichiaPseudomonas shuttle vectors derived from pUC18/19. Gene 97, 109–112.[CrossRef]
    [Google Scholar]
  24. Schweizer, H. D. ( 1993; ). Small broad-host-range gentamycin resistance gene cassettes for site-specific insertion and deletion mutagenesis. Biotechniques 15, 831–834.
    [Google Scholar]
  25. Shanks, R. M., Caiazza, N. C., Hinsa, S. M., Toutain, C. M. & O'Toole, G. A. ( 2006; ). Saccharomyces cerevisiae-based molecular tool kit for manipulation of genes from Gram-negative bacteria. Appl Environ Microbiol 72, 5027–5036.[CrossRef]
    [Google Scholar]
  26. Stover, C. K., Pham, X. Q., Erwin, A. L., Mizoguchi, S. D., Warrener, P., Hickey, M. J., Brinkman, F. S., Hufnagle, W. O., Kowalik, D. J. & other authors ( 2000; ). Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature 406, 959–964.[CrossRef]
    [Google Scholar]
  27. Strack, E., Aurich, H. & Gruener, E. ( 1964; ). On the degradation capacity of certain Pseudomonas species for (−)-carnitine. Z Allg Mikrobiol 61, 154–160.
    [Google Scholar]
  28. Uanschou, C., Frieht, R. & Pittner, F. ( 2005; ). What to learn from a comparative genomic analysis of l-carnitine dehydrogenase. Monatsh Chem 136, 1365–1381.[CrossRef]
    [Google Scholar]
  29. Wargo, M. J., Szwergold, B. S. & Hogan, D. A. ( 2008; ). Identification of two gene clusters and a transcriptional regulator required for Pseudomonas aeruginosa glycine betaine catabolism. J Bacteriol 190, 2690–2699.[CrossRef]
    [Google Scholar]
  30. Wargo, M. J., Ho, T. C., Gross, M. J., Whittaker, L. A. & Hogan, D. A. ( 2009; ). GbdR regulates Pseudomonas aeruginosa plcH and pchP transcription in response to choline catabolites. Infect Immun 77, 1103–1111.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.028787-0
Loading
/content/journal/micro/10.1099/mic.0.028787-0
Loading

Data & Media loading...

Supplements

. Primers used in this study. (Acrobat PDF)

PDF

. Doubling times of strains on pyruvate and carnitine. (Acrobat PDF)

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error